Quiz 2: Electrostatics

$$
\begin{aligned}
\vec{F}_{12} & =k_{e} \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}=q \vec{E} \quad k_{e} \approx 9 \times 10^{9}\left[\frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right] \\
e & =1.6 \times 10^{-19}[\mathrm{C}] \quad m_{e}=9.11 \times 10^{-31}[\mathrm{~kg}]
\end{aligned}
$$

I. An electron (of charge $-e$ and mass m_{e}) enters a region of uniform electric field $\vec{E}=200 \hat{\boldsymbol{x}}$ [N/C] with velocity $\vec{v}_{i}=3.0 \times 10^{6} \hat{\boldsymbol{x}}[\mathrm{~m} / \mathrm{s}]$. What is magnitude the acceleration $|\vec{a}|$ of the electron due to the electric field? Recall $\vec{F}=m \vec{a}$.
2. Two charges of $+1 \mu \mathrm{C}$ each are separated by 1 cm . What is the force between them?
3. Two charges of $+1 \mu \mathrm{C}$ are separated by 1 cm . What is the magnitude of the electric field halfway between them?

