PH 102 / LeClair

Summer II 2009

Quiz 3: Electric Potential

$\Delta V = \vec{E} \Delta \vec{x} $	$\Delta PE = q\Delta V$	$KE = \frac{1}{2}mv^2$	F = ma	F = qE
$e = 1.6 \times 10^{-19}$	$[\mathbf{C}] m_e = 9.$	$11 \times 10^{-31} [\text{kg}]$	$m_p = 1.67 \times$	$10^{-27} [\text{kg}]$

1. It takes 3×10^6 J of energy to fully recharge a 9 V battery. How many electrons must be moved across the $\Delta V = 9$ V potential difference to fully recharge the battery? One electron has a charge of -e, given above.

2. An electron initially at rest is accelerated through a potential difference of 1 V, and gains kinetic energy KE_e . A proton, also initially at rest, is accelerated through a potential difference of -1 V, and gains kinetic energy KE_p . Is the electron's kinetic energy larger, smaller, or the same compared to the protons? Justify your answer. Note that the proton mass m_p is about 1000 times the electron mass m_e .

3. A "free" electron and a "free" proton are placed in an identical electric field. Which of the following statements are true? *Check all that apply.*

- ^D Each particle is acted on by the same electric force and has the same acceleration.
- ^D The electric force on the proton is greater in magnitude than the force on the electron, but in the opposite direction.
- ^D The electric force on the proton is equal in magnitude to the force on the electron, but in the opposite direction.
- ^D The magnitude of the acceleration of the electron is greater than that of the proton.
- D Both particles have the same acceleration.