Quiz 4: Capacitors and Such

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{C} \Delta \mathrm{~V} \quad \text { Energy }=\frac{1}{2} \mathrm{Q} \Delta \mathrm{~V}=\frac{1}{2} \mathrm{C}(\Delta \mathrm{~V})^{2}=\mathrm{Q}^{2} / 2 \mathrm{C} \\
& \mathrm{C}=\epsilon_{\mathrm{o}} A / \mathrm{d} \quad \text { parallel plate } \quad \epsilon_{\mathrm{o}}=\frac{1}{4 \pi \mathrm{k}_{e}}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \quad \mathrm{e}=1.60218 \times 10^{-19} \mathrm{C} \\
& \frac{1}{\mathrm{C}_{\mathrm{eq}, \text { series }}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}} \quad \mathrm{C}_{\mathrm{eq}, \text { par }}=\mathrm{C}_{1}+\mathrm{C}_{2}
\end{aligned}
$$

I. A fully charged defibrillator contains 1.20 kJ of stored electrical energy in a $1.1 \times 10^{-4} \mathrm{~F}$ capacitor. Find the voltage needed to store 1.20 kJ in the unit.
2. Five $5 \mu \mathrm{~F}$ capacitors are connected in parallel. What is the equivalent capacitance? How about if all five are connected in series?
3. I have two batteries and three capacitors. How should I connect them to store the most electrical energy? Describe in words or as a circuit diagram as you choose.

