Quiz s: Magnets and Such

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{q}}=\mathrm{qvB} \sin \theta_{v \mathrm{~B}} \quad \mathrm{~F}_{\text {centr }}=\frac{m v^{2}}{r} \quad \mathrm{~F}_{\mathrm{q}}=\mathrm{qE} \\
& \mathrm{~B}_{\mathrm{I}}=\frac{\mu_{\mathrm{o}} \mathrm{I}}{2 \pi r} \quad \mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \quad e=1.6 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

I. The figure at left shows a simplified mass spectrometer. Particles with charge q and mass m enter at left with a velocity v, and encounter a region with both an E and B field as shown. What is the relationship between $v, \mathrm{~B}$, and E for particles that make it through the aperture in the middle of the detector?
2. Consider a proton moving with a speed of $1 \cdot 10^{5} \mathrm{~m} / \mathrm{s}$ through the earth's magnetic field $(|\overrightarrow{\mathbf{B}}|=$ $55 \mu \mathrm{~T})$. When the proton moves east, the magnetic force acts straight upward. When the proton moves northward, no force acts on it. What is the direction of the magnetic field? (Note: $\mu=10^{-6}$.)
3. Two wires run parallel to each other and carry currents of 15 A in the same direction. What is the magnetic field halfway between the two wires?

