
Physics 102
Dr. LeClair



Official things

Lecture:
• 203 Gallalee
• every day!

Lab:
• 329 Gallalee
• M-W-Th ~3 hr block

• will not usually need whole 3 hours



NO lab today



official things
• Dr. Patrick LeClair

- leclair.homework@gmail.com
- office: 323 Gallalee / 2050 Bevill 
- lab: 1053 Bevill

• Office hours:
- 1-1:30pm in Gallalee
- 4:30-5:30pm in Bevill

• other times by appointment

mailto:leclair.homework@gmail.com
mailto:leclair.homework@gmail.com


Misc. Format Issues
• we will take a break during lectures ...
• lecture and labs will try to stay linked
• learn a concept, then demonstrate it
• working in groups is encouraged for homework



social interaction
• we need you in groups of 3-4 for labs
• groups are not assigned ...

- ... so long as they remain functional 
relationships

- even distribution of workload



What will we cover?
• relativity
• electric forces & fields
• electrical energy & capacitance
• current & resistance
• dc circuits
• magnetism
• electromagnetic induction
• ac circuits & EM waves



what will we cover (cont.)

• reflection and refraction
• mirrors & lenses
• wave optics
• quantum physics
• atomic physics
• nuclear physics



Grading and so forth

• labs/exercises 10%
• quizzes 10%

• homework 20%

• exams: 3 of them, 20% each
last one during final exam 
period, not cumulative



 Homework 

• Posted on web page, turn in hard copy or 
by email

• due date/time is rigid. drop lowest score.

• can collaborate, BUT turn in your own

• will go over @ start of lab sessions



quizzes

• sometimes. during most lab periods.
• only a few questions!
• previous day’s work mostly
• 10-15 min anticipated



labs / exercises

• try to be on time ...
• something due every day lab is held
• if not a “real” lab: 

in-class exercises or simulations
• drop 1 lab

• USUALLY will not take 3 hours



stuff you need

• textbook
which one makes little difference

• course notes (optional)
PDF online (do not print it here)

• calculator
basic with trig/log

• notebook

5
Current and Resistance

5.1 Electric Current

ELECTRIC current is something that we use and hear about every day, but few of us stop to think
about what it really is. What is an electric current? An electric current is nothing more than the net

flow of charges through some region in a conductor.

Figure 5.1: Georg Simon Ohm

(1789 – 1854) a German physi-

cist, who first found the rela-

tionship between current, volt-

age, and resistance. 14

If we take a cross section of a conductor, such as a circular wire, an electric
current is said to exist if there is a net flow of charge through this surface. The
amount of current is simply the rate at which charge is flowing, the number of
charges per unit time that traverse the cross-section. Strictly speaking, we try
to choose the cross-sections for defining charge flow such that the charges flow
perpendicular to that surface, somewhat like we did for Gauss’s law. Figure 5.2
shows a cartoon depiction of how we define current.

Current is a flux of charge through a wire in the same way that water flow is
a flux of water through a pipe. As we shall see, this is a reasonable way to think
about electric circuits as well – current always has to flow somewhere, and you
don’t want an open connection any more than you would want an open-ended
water pipe. Voltage is more like a pressure gauge – you can have a voltage even
when nothing is flowing, it just means there is the potential for flow (nerdy pun
intended).

If a net amount of charge �Q flows perpendicularly through a particular
surface of area A within a time interval �t, we define the electric current to be simply the amount of charge
divided by the time interval:

Electric Current: if a net amount of charge �Q flows perpendicularly through a surface
of area A in a time interval �t, the electric current I is:

I � �Q

�t
(5.1)

In other words, current is charge flow per unit time.

This represents a conservation law as well. Charge can neither be created or destroyed. If we have
some steady stream of charge pouring into of a region of fixed volume, then the charge density inside would
continually grow (tending toward infinity!) if there were not also some compensating flow of charges out of
the volume. Putting it the other way around, if a steady stream of charges were leaving the fixed volume, the
charge density would also become infinitely large if there were not some other source of charges to replace
those lost. But creating charges out of thin air is the one thing that definitely will not happen! Therefore,
the change in the total number of charges in a volume at any time has to equal the net flow of current
through that volume, otherwise we would require spontaneous generation of charge.i

Units of electric current I: Coulombs per second [C/s] or Amperes [A].

iWe have waved our hands a bit here, since we should talk about current density and charge density, but the essential points
are the same.
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showing up

• no make-up of in-class work
“acceptable” + documented gets you a BYE

• missing an exam is seriously bad.
acceptable reason - makeup or weight final

• lowest lab is dropped. I don’t want to know.



distractions
• cell phones

- keep it on a quiet mode. 
- take the call outside if it is urgent

• “no food/drink”

• at least one break during each lecture



other

Academic misconduct
• do your own work on quizzes & exams
• suspected violations referred to A & S
• teamwork encouraged on labs/homework

Accessibility/disability accommodations
• for a request - 348-4285 Disabilities services
• after initial arrangements, contact me



internets

• we have our own intertubes:  

- http://ph102.blogspot.com

- updated very frequently. often at odd hours.

- comments (anonymous even) allowed

- rss / twitter feeds of posts

• google calendar

• can add RSS feed of blog to facebook

• check blog & calendar before class

http://ph102.blogspot.com
http://ph102.blogspot.com
http://www.google.com/calendar/embed?src=c1gr9udvfrpqsejrmdfo6obmjc%2540group.calendar.google.com&mode=AGENDA
http://www.google.com/calendar/embed?src=c1gr9udvfrpqsejrmdfo6obmjc%2540group.calendar.google.com&mode=AGENDA


let’s get at it

The pace will have to be brutal.

Today & tomorrow 

• Relativity (notes Ch. 1)
• no lab today

Monday

• electric fields & forces
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8 1 Relativity

frame of reference, we must be able to describe their relative motion, or how the separation between
Joe and Moe changes with time, even though we can’t speak of their absolute velocities in any sense.

Joe Moe

!vJoe !vMoe

do

Fig. 1.5 Joe and Moe running at different speeds in
the same direction. Both Joe and Moe measure the
same relative velocity with respect to each other.

Let’s say we arbitrarily choose Joe’s position at t = 0 as our reference point. It is easy then to
write down what Joe and Moe’s positions are at any later time interval � t:

xJoe = vJoe� t xMoe = d0 + vMoe� t (1.2)

We can straightforwardly write down the separation between them (their relative displacement) as
well:

�xMoe-Joe = xMoe� xJoe = d0 + vMoe� t� vJoe� t = d0 +(vMoe� vJoe)� t (1.3)

Sure enough, their relative displacement only depends on their starting separation and their relative
velocity, vMoe�vJoe. Further, both Joe and Moe would agree with this, since we could arbitrarily
choose Moe’s position at t =0 as our reference point, and we would end up with the same answer.
Since there is nothing special about either position, we can choose any point whatsoever as a refer-
ence, and wind up with the same result. We end up with the same physics no matter what reference
point we choose, which one we choose is all a matter of convenience in the end.

Choosing a coordinate system:

1. Choose an origin. This may coincide with a special point or object given in the problem
- for instance, right at an observer’s position, or halfway between two observers. Make it
convenient!

2. Choose a set of axes, such as rectangular or polar. The simplest are usually rectangular or
Cartesian x-y-z, though your choice should fit the symmetry of the problem given - if your
problem has circular symmetry, rectangular coordinates may make life difficult.

3. Align the axes. Again, make it convenient - for instance, align your x axis along a line
connecting two special points in the problem. Sometimes a thoughtful but less obvious
choice may save you a lot of math!

4. Choose which directions are positive and negative. This choice is arbitrary, in the end, so
choose the least confusing convention.

This seems simple enough, but if we think about this a bit longer, more problems arise. Who
measures the initial separation d0, Joe or Moe? Who keeps track of the elapsed time � t? Does it
matter at all, can the measurement of distance or time be affected by relative motion? Of course, the
answer is an awkward ‘yes’ or we would not dwell on this point. If we delve deeper on the problem of
relative motion, we come to the inescapable conclusion that not only is velocity a relative concept,
our notions of distance and time are relative as well, and depend on the relative motion of the
observer. In order to properly understand these deeper ramifications, however, we need to perform a
few more thought experiments.



earth

!vorbit

laser

la
s
e
r

la
s
e
r

!vA

!vB

!vC

no difference
can’t measure earth’s velocity 

relative to empty space



Joe

|!v| = 0.9c

|!v| = c

Moe

bflO

O’ y
′

x
′

y

x



O

O’ y
′

x
′

y

x

Joe

Moe



O’ y
′

x
′

Joe

O y

x

Moe

|!v| = 0.9c

Joe flips on the light
he sees the light hit 

the walls at the same time



Joe

O’ y
′

x
′

O y

x

Moe

|!v| = 0.9c

c∆t

What does Moe see?
the ship moved;

the origin of the light did not



Oy

x

Moe

Joe

O’y
′

x
′ |!v| = 0.9c

d

Joe bounces a laser off of some mirrors
he counts the round trips

this measures distance



Oy

x

Moe

Joe

O’y
′

x
′ |!v| = 0.9c

Moe sees the boxcar move;
once the light is created, it does not.

Moe sees a triangle wave



d

1

2
c∆t

O
Moe

1

2
v∆t

O
Moe



0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

 

 

γ

v / c

0.0 0.1 0.2 0.3
1.00

1.05

  

 

 



O

O’ y
′

x
′

y

x

v

L

Earth



v = 0 0.5c 0.75c 0.9c 0.95c 0.99c 0.999c

v



O’y
′

x
′

Oy

x

v

x

P



22 1 Relativity

and unprimed on the other, we arrive the transformations between positions measured by moving
observers in their usual form:

Transformation of distance between reference frames:

x⇤ = � (x� vt) (1.37)

x = �
�
x⇤+ vt ⇤

⇥
(1.38)

Here (x, t) is the position and time of an event as measured by an observer in O stationary to
it. A second observer in O⇤, moving at velocity v, measures the same event to be at position
and time (x⇤, t ⇤).

These equations include the effects of length contraction and time dilation we have already de-
veloped, as well as including the relative motion between the observers. If we use Eqs. 1.35 and 1.36
together, we can also arrive at a more direct expression to transform the measurement times as well.
To start, we’ll take Eq. 1.37 as written, and substitute it into Eq. 1.38:

x = �
�
x⇤+ vt ⇤

⇥
(1.39)

= �
�
� (x� vt)+ vt ⇤

⇥
(1.40)

= �2x� �2vt + �vt ⇤ (1.41)

So far its a bit messy, but it will get better. Now let’s solve that for t ⇤. A handy relationship we will
make use of is

�
1� �2⇥/�2 =�v2/c2, which you should verify for yourself.

�vt ⇤ =
�
1� �2⇥x+ �2vt (1.42)

=⇥ t ⇤ = �t +
�
1� �2⇥x

�v
(1.43)

= �
⌥

t +
1� �2

�2

⇤x
v

⌅�
(1.44)

= �
 
t� vx

c2

⌦
(1.45)

And there we have it, the transformation between time measured in different reference frames. A
similar procedure gives us the reverse transformation for t in terms of x⇤ and t ⇤.

Time measurements in different non-accelerating reference frames:

t ⇤ = �
⇤

t� vx
c2

⌅
(1.46)

t = �
⇧

t ⇤+
vx⇤

c2

⌃
(1.47)

Here (x, t) is the position and time of an event as measured by an observer in O stationary to
it. A second observer in O⇤, moving at velocity v, measures the same event to be at position
and time (x⇤, t ⇤).

The first term in this equation is just the time it takes light to travel across the distance x from
point P, corrected for the effects of time dilation we now expect. The second term is new, and it
represents an additional offset between the clock on the ground and the one in the car, not just one
running slower than the other. What it means is that events seen by the girl in frame O do not happen
at the same time as viewed by the boy in O⇤!
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1.3 Consequences of Relativity 23

This is perhaps more clear to see if we make two different measurements, and try to find the
elapsed time between two events. If our girl in frame O sees one even take place at position x1 and
time t1, labeled as (x1, t1), and a second event at x2 and t2, labeled as (x2, t2), then she would say
that the two events were spatially separated by �x=x1�x2, and the time interval between them was
� t =t1�t2. If we follow the transformation to find the corresponding times that the boy observes, t ⇥1
and t ⇥2, we can also calculate the boy’s perceived time interval between the events, � t ⇥:

Elapsed times between events in non-accelerating reference frames:

� t ⇥ = t ⇥1 � t ⇥2 = ⇥
�

� t � v�x
c2

⇥
(1.48)

If observer in O stationary relative to the events (x1, t1) and (x2, t2) measures a time difference
between them of � t = t1�t2 and a spatial separation �x=x1 � x2, an observer in O⇥ measures
a time interval for the same events � t ⇥. Events simultaneous in one frame (� t = 0) are only
simultaneous in the other (� t ⇥=0) when there is no spatial separation between the two events
(�x=0).

For two events to be simultaneous, there has to be no time delay between them. For the girl to
say the events are simultaneous requires that she measure � t =0, while for the boy to say the same
requires � t ⇥ = 0. We cannot satisfy both of these conditions based on Eq. 1.48 unless there is no
relative velocity between observers (v=0), or the events being measured are not spatially separated
(�x = 0). This means two observers in relative will only find the same events simultaneous if the
events are not spatially separated! Put simply, events are only simultaneous in both reference
frames if they happen at the same spot. At a given velocity, the larger the separation between the
two events, the greater the degree of non-simultaneity. Similarly, for a given separation, the larger
the velocity, the greater the discrepancy between the two frames. This is sometimes called “failure
of simultaneity at a distance.”

In the end, this is our general formula for time dilation, including events which are spatially
separated. If we plough still deeper into the consequences of special relativity and simultaneity, we
will find that our principles of relativity have indeed preserved causality - cause always precedes
effect - it is just that what one means by “precede” depends on which observer you ask. What
relativity says is that cause must precede its effect according to all observers in inertial frames,
which equivalently prevents both faster than light travel or communication and influencing the past.

1.3.4.1 Summary of sorts: the Lorentz Transformations

We are now ready to make a summary of the relativistic transformations of time and space. Let us
consider two reference frames, O and O⇥, moving at a constant velocity v relative to one another.
For simplicity, we will consider the motion to be along the x and x⇥ axes in each reference frame, so
the problem is still one-dimensional. The observer in frame O measures an event to occur at time
t and position (x,y,z). The event is at rest with respect to the O frame. Meanwhile, the observer in
frame O⇥ measures the same event to take place at time t ⇥ and position (x⇥,y⇥,z⇥). Based on what we
have learned so far, we can write down the general relations between space and time coordinates in
each frame, known as the Lorentz transformations:

Lorentz transformations between coordinate systems:
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let’s work out some problems
































