PHYsICs 102

Dr. LECLAIR

OfFICIAL THINGS

$$
\Delta_{y}
$$

Lecture:

- 227 Gallalee
- every day!

Lab:

- M-W-Th ~3 hr block
- will not usually need whole 3 hours

OFFICIAL THINGS

- Dr. Patrick LeClair
- leclair.homework@gmail.com
- office: 110 Gallalee / 228 Bevill
- lab: 180 Bevill
- Office hours:
- 12-1pm in Gallalee
- other times by appointment

MISC. FORMAT ISSUES

- we will take a break during lectures ...
- lecture and labs will try to stay linked
- learn a concept, then demonstrate it
- working in groups is encouraged for homework

SOCIAL INTERACTION

- we need you in groups of 3-4 for labs
- groups are not assigned ...
- ... so long as they remain functional relationships
- even distribution of workload

WHAT WILL WE COVER?

- relativity
- electric forces \& fields
- electrical energy \& capacitance
- current \& resistance
- dc circuits
- magnetism
- electromagnetic induction
(a)

(b)

RH

- ac circuits \& EM waves

WHAT WILL WE COVER (cont.)

- reflection and refraction
- mirrors \& lenses
- wave optics
- quantum physics
- atomic physics
- nuclear physics

(b)

GRADING AND SO FORTH

- labs/exercises
- quizzes, homework
- Q \& HW alternate
- something every day
- exams: two of them

Component	Sections	\%	
		section	total
In-class work	Labs \& Exercises ${ }^{\dagger}$	15	
	Quizzes ${ }^{\ddagger}$	15	
Outside work	Homework problems ${ }^{\ddagger}$		30
		15	
Hour Exams			15
	Exam I	15	
	Exam II	15	
			30
Final Exam			25

- during lab period
- ~60-90 min

HOMEWORK

- posed on the blog [pdf]
- due 'by the end of the day'
- hard copy or email (e.g., scanned, pic) my Gallalee or Bevill mailbox give to me or TA at lab time
- can collaborate, BUT turn in your own
- have to show your work to get credit.
- will go over @ start of lab sessions

QUIZZES

- every other day
- only a few questions!
- previous day's work
- 10-15 min anticipated
- also ... randomly in lecture / lab

LABS / EXERCISES

- try to be on time ...
- something due every day lab is held
- if not a "real" lab: in-class exercises or simulations
- drop 2 labs
- USUALLY will not take 3 hours

STUFF YOU NEED

- textbook

Serway \& Faughn. get a used one.

- course notes (optional)

PDF online (do not print it here)

- calculator
basic with trig / log
- notebook

SHOWING UP

- no make-up of in-class work or homework "acceptable" + documented gets you a BYE
- missing an exam is seriously bad.
acceptable reason => makeup or weight final
- lowest 2 labs are dropped. I don't want to know.

DISTRACTIONS

- cell phones
- keep it on a quiet mode.
- take the call outside if it is urgent
- "no food / drink"
- at least one break during each lecture

OTHER

Academic misconduct

- do your own work on quizzes \& exams
- suspected violations referred to A \& S
- teamwork encouraged on labs/homework

Accessibility / disability accommodations

- for a request - 348-4285 Disabilities services
- after initial arrangements, contact me

INTERNETS

- we have our own intertubes:
- http://ph102.blogspot.com
- updated very frequently. often at odd hours.
- comments (anonymous even) allowed
- rss feed
- google calendar
- Facebook group ...
- can add RSS feed of blog to facebook
- check blog \& calendar before class

LET'S GET AT IT

The pace will have to be brutal.
Today \& tomorrow

- Relativity (S \& F ch. 26, Notes Ch. 1)

Friday

- electric fields \& forces

Tomorrow's lab

- research \& writing assignment (yes really)
(a)

$\Delta x=10 \mathrm{~m}$
(b) $\quad y \underset{x}{\longrightarrow}$
O
$(0,0) \quad\left(x_{f}, 0\right)$
$\Delta x=x_{f}-0=x_{f}$
(c)

$O^{\prime} y^{\dagger} \underset{x^{\prime}}{ }$

Luminiferous æther

Choosing a coordinate system:

1. Choose an origin. This may coincide with a special point or object given in the problem - for instance, right at an observer's position, or halfway between two observers. Make it convenient!
2. Choose a set of axes, such as rectangular or polar. The simplest are usually rectangular or Cartesian $x-y-z$, though your choice should fit the symmetry of the problem given - if your problem has circular symmetry, rectangular coordinates may make life difficult.
3. Align the axes. Again, make it convenient - for instance, align your x axis along a line connecting two special points in the problem. Sometimes a thoughtful but less obvious choice may save you a lot of math!
4. Choose which directions are positive and negative. This choice is arbitrary, in the end, so choose the least confusing convention.

$O{ }^{y} \underset{x}{\longrightarrow} \quad \stackrel{Q}{x}$ Moe
Joe flips on the light he sees the light hit the walls at the same time

$O^{y} \underset{x}{\longrightarrow} \quad \stackrel{i}{x}$ Moe
What does Moe see? the ship moved;
the origin of the light did not

Joe bounces a laser off of some mirrors he counts the round trips this measures distance

$y \underset{x}{\uparrow} \xrightarrow{\text { ¢ }}$ Moe
Moe sees the boxcar move; once the light is created, it does not. Moe sees a triangle wave

$v \longrightarrow$

$$
v=0
$$

$0.75 c$

$0.9 c \quad 0.95 c 0.99 c 0.999 c$

Transformation of distance between reference frames:

$$
\begin{align*}
x^{\prime} & =\gamma(x-v t) \\
x & =\gamma\left(x^{\prime}+v t^{\prime}\right)
\end{align*}
$$

Here (x, t) is the position and time of an event as measured by an observer in O stationary it. A second observer in O^{\prime}, moving at velocity v, measures the same event to be at positic and time $\left(x^{\prime}, t^{\prime}\right)$.

Time measurements in different non-accelerating reference frames:

$$
\begin{align*}
t^{\prime} & =\gamma\left(t-\frac{v x}{c^{2}}\right) \tag{1.46}\\
t & =\gamma\left(t^{\prime}+\frac{v x^{\prime}}{c^{2}}\right) \tag{1.47}
\end{align*}
$$

Here (x, t) is the position and time of an event as measured by an observer in O stationary to it. A second observer in O^{\prime}, moving at velocity v, measures the same event to be at position and time $\left(x^{\prime}, t^{\prime}\right)$.

Elapsed times between events in non-accelerating reference frames:

$$
\Delta t^{\prime}=t_{1}^{\prime}-t_{2}^{\prime}=\gamma\left(\Delta t-\frac{v \Delta x}{c^{2}}\right)
$$

let's work out some problems

1. An astronaut traveling at $v=0.80 c$ taps her foot 3.0 times per second. What is the frequency of taps determined by an observer on earth? (Hint: be careful about the difference between time and frequency!)5.0 taps/sec6.7 taps/sec$1.8 \mathrm{taps} / \mathrm{sec}$3.0 taps/sec
2. A spaceship moves away from earth at high speed. How do experimenters on earth measure a clock in the spaceship to be running? How do those in the spaceship measure a clock on earth to be running?slow; fastslow; slowfast; slowfast; fast
3. If you are moving in a spaceship at high speed relative to the earth, would you notice a difference in your pulse rate? In the pulse rate of the people back on earth?no; yesno; noyes; noyes; yes
4. The period of a pendulum is measured to be 3.00 in its own reference frame. What is the period as measured by an observer moving at a speed of 0.950 c with respect to the pendulum?6.00 sec13.4 sec0.938 sec9.61 sec
5. $1.8 \mathrm{taps} / \mathrm{sec}$. The 'proper time' Δt_{p} is that measured by the astronaut herself, which is $1 / 3$ of a second between taps (so that there are 3 taps per second). The time interval between taps measured on earth is dilated (longer), so there are less taps per second. For the astronaut:

$$
\Delta t_{p}=\frac{1 \mathrm{~s}}{3 \operatorname{taps}}
$$

On earth, we measure the dilated time:

$$
\Delta t^{\prime}=\gamma \Delta t_{p}=\frac{1}{\sqrt{1-\frac{0.8^{2} c^{2}}{c^{2}}}} \cdot\left(\frac{1 \mathrm{~s}}{3 \operatorname{taps}}\right)=\frac{1}{\sqrt{1-0.8^{2}}} \cdot\left(\frac{1 \mathrm{~s}}{3 \operatorname{taps}}\right) \approx \frac{0.56 \mathrm{~s}}{\operatorname{tap}}=\frac{1 \mathrm{~s}}{1.8 \operatorname{taps}}
$$

1. An astronaut traveling at $v=0.80 \mathrm{c}$ taps her foot 3.0 times per second. What is the frequency of taps determined by an observer on earth? (Hint: be careful about the difference between time and frequency!)$5.0 \mathrm{taps} / \mathrm{sec}$
$6.7 \mathrm{taps} / \mathrm{sec}$

$\underset{\sim}{2}$1.8 taps $/ \mathrm{sec}$
$3.0 \mathrm{taps} / \mathrm{sec}$
2. A spaceship moves away from earth at high speed. How do experimenters on earth measure a clock in the spaceship to be running? How do those in the spaceship measure a clock on earth to be running?slow; fastslow; slowfast; slowfast; fast
3. If you are moving in a spaceship at high speed relative to the earth, would you notice a difference in your pulse rate? In the pulse rate of the people back on earth?no; yesno; noyes; noyes; yes
4. The period of a pendulum is measured to be 3.00 in its own reference frame. What is the period as measured by an observer moving at a speed of 0.950 c with respect to the pendulum?6.00 sec13.4 sec0.938 sec9.61 sec
2. slow; slow. The time-dilation effect is symmetric, so observers in each frame measure a clock in the other to be running slow. Put another way, the relative velocity of the earth and the ship is the same no matter who you ask - each says the other is moving with some speed v, and they are sitting still. Therefore, the dilation effect is the same in both cases.

1. An astronaut traveling at $v=0.80 \mathrm{c}$ taps her foot 3.0 times per second. What is the frequency of taps determined by an observer on earth? (Hint: be careful about the difference between time and frequency!)$5.0 \mathrm{taps} / \mathrm{sec}$

$\underbrace{8}_{0}$
$6.7 \mathrm{taps} / \mathrm{sec}$
$1.8 \mathrm{taps} / \mathrm{sec}$
$3.0 \mathrm{taps} / \mathrm{sec}$
2. A spaceship moves away from earth at high speed. How do experimenters on earth measure a clock in the spaceship to be running? How do those in the spaceship measure a clock on earth to be running?fast; fast
3. If you are moving in a spaceship at high speed relative to the earth, would you notice a difference in your pulse rate? In the pulse rate of the people back on earth?no; yesno; noyes; noyes; yes
4. The period of a pendulum is measured to be 3.00 in its own reference frame. What is the period as measured by an observer moving at a speed of 0.950 c with respect to the pendulum?6.00 sec13.4 sec0.938 sec9.61 sec
3. no; yes. There is no relative speed between you and your own pulse, since you are in the same reference frame, so there is no difference in your pulse rate (possible space-travel-related anxieties aside). There is a relative velocity between you and the people back on earth, however, so you would find their pulse rate slower than normal. Similarly, they would find your pulse rate slower than normal, since you are moving relative to them. Relativistic effects are always attributed to the other party - you are always at rest in your own reference frame.

1. An astronaut traveling at $v=0.80 c$ taps her foot 3.0 times per second. What is the frequency of taps determined by an observer on earth? (Hint: be careful about the difference between time and frequency!)$5.0 \mathrm{taps} / \mathrm{sec}$
$6.7 \mathrm{taps} / \mathrm{sec}$

1.8 taps $/ \mathrm{sec}$
$3.0 \mathrm{taps} / \mathrm{sec}$
2. A spaceship moves away from earth at high speed. How do experimenters on earth measure a clock in the spaceship to be running? How do those in the spaceship measure a clock on earth to be running?fast; fast
3. If you are moving in a spaceship at high speed relative to the earth, would you notice a difference in your pulse rate? In the pulse rate of the people back on earth?

$$
\begin{aligned}
& \text { no; yes } \\
& \text { no; no } \\
& \text { yes; no } \\
& \text { yes; yes }
\end{aligned}
$$

4. The period of a pendulum is measured to be 3.00 in its own reference frame. What is the period as measured by an observer moving at a speed of 0.950 c with respect to the pendulum?6.00 sec13.4 sec0.938 sec9.61 sec
5. 9.61 sec . The proper time is that measured by in the reference frame of the pendulum itself, $\Delta t_{p}=3.00 \mathrm{sec}$. The moving observer has to observe a longer period for the pendulum, since from the observer's point of view, the pendulum is moving relative to it. Observers always perceive clocks moving relative to them as running slow. The factor between the two times is just γ :

$$
\Delta t^{\prime}=\gamma \Delta t_{p}=\frac{3.0 \mathrm{sec}}{\sqrt{1-\frac{0.95^{2} c^{2}}{c^{2}}}}=\frac{3.0 \mathrm{sec}}{\sqrt{1-0.95^{2}}} \approx 9.61 \mathrm{sec}
$$

1. An astronaut traveling at $v=0.80 c$ taps her foot 3.0 times per second. What is the frequency of taps determined by an observer on earth? (Hint: be careful about the difference between time and frequency!)$5.0 \mathrm{taps} / \mathrm{sec}$
$6.7 \mathrm{taps} / \mathrm{sec}$

1.8 taps $/ \mathrm{sec}$
$3.0 \mathrm{taps} / \mathrm{sec}$
2. A spaceship moves away from earth at high speed. How do experimenters on earth measure a clock in the spaceship to be running? How do those in the spaceship measure a clock on earth to be running?fast; fast
3. If you are moving in a spaceship at high speed relative to the earth, would you notice a difference in your pulse rate? In the pulse rate of the people back on earth?

$$
\begin{aligned}
& \mathcal{W n o}_{\text {no; yes }} \\
& \text { no; no } \\
& \text { yes; no } \\
& \text { yes; yes }
\end{aligned}
$$

4. The period of a pendulum is measured to be 3.00 in its own reference frame. What is the period as measured by an observer moving at a speed of 0.950 c with respect to the pendulum?6.00 sec

13.4 sec
\&
0.938 sec
9.61 sec
5. You are packing for a trip to another star, and on your journey you will travel at $0.99 c$. Can you sleep in a smaller cabin than usual, because you will be shorter when you lie down? Explain your answer.
6. A deep-space probe moves away from Earth with a speed of 0.88 c. An antenna on the probe requires 4.0 s , in probe time, to rotate through 1.0 rev . How much time is required for 1.0 rev according to an observer on Earth?
7. A friend in a spaceship travels past you at a high speed. He tells you that his ship is 24 m long and that the identical ship you are sitting in is 18 m long.
(a) According to your observations, how long is your ship?
(b) According to your observations, how long is his ship?
(c) According to your observations, what is the speed of your friend's ship?
8. No. There is no relative speed between you and your cabin, since you are in the same reference frame. You and your bed will remain at the same lengths relative to each other.
9. You are packing for a trip to another star, and on your journey you will travel at $0.99 c$. Can you sleep in a smaller cabin than usual, because you will be shorter when you lie down? Explain your answer.
10. A deep-space probe moves away from Earth with a speed of $0.88 c$. An antenna on the probe requires 4.0 s , in probe time, to rotate through 1.0 rev . How much time is required for 1.0 rev according to an observer on Earth?
11. A friend in a spaceship travels past you at a high speed. He tells you that his ship is 24 m long and that the identical ship you are sitting in is 18 m long.
(a) According to your observations, how long is your ship?
(b) According to your observations, how long is his ship?
(c) According to your observations, what is the speed of your friend's ship?
12. 8.42 s . The time interval in the probe's reference frame is the proper one $\Delta t_{p} \ldots$ which makes sense, since the antenna is part of the probe itself! The probe and antenna are moving relative to the earth, and therefore the earthbound observer measures a longer, dilated time interval Δt^{\prime} :

$$
\begin{aligned}
\text { probe } & =\Delta t_{p} \\
\text { earth } & =\Delta t^{\prime} \\
\Delta t^{\prime} & =\gamma \Delta t_{p}
\end{aligned}
$$

As usual, we first need to calculate γ. No problem, given the probe's velocity of $0.88 c$ relative to earth:

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-\frac{(0.88 c)^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-0.88^{2}}}=2.11
$$

The proper time interval for one revolution Δt_{p} in the probe's reference frame is 4.0 s , so we can readily calculate the time interval observed by the earthbound observer:

$$
\Delta t^{\prime}=\gamma \Delta t_{p}=2.11 \cdot(4.0 \mathrm{~s})=8.42 \mathrm{~s}
$$

6. You are packing for a trip to another star, and on your journey you will travel at 0.99 c . Can you sleep in a smaller cabin than usual, because you will be shorter when you lie down? Explain your answer.
7. A deep-space probe moves away from Earth with a speed of $0.88 c$. An antenna on the probe requires 4.0 s , in probe time, to rotate through 1.0 rev . How much time is required for 1.0 rev according to an observer on Earth?
8. A friend in a spaceship travels past you at a high speed. He tells you that his ship is 24 m long and that the identical ship you are sitting in is 18 m long.
(a) According to your observations, how long is your ship?
(b) According to your observations, how long is his ship?
(c) According to your observations, what is the speed of your friend's ship?
9. $24 \mathrm{~m} ; 18 \mathrm{~m} ; 0.661 c$. Once again: if you are observing something in your own reference frame, there is no length contraction or time dilation. You always observe your own ship to be the same length. If your friend's ship is 24 m long, and yours is identical, you will measure it to be 24 m .

On the other hand, you are moving relative to his ship, so you would observe his ship to be length contracted, and measure a shorter length. Your friend, on the other hand, will observe exactly the same thing - he will see your ship contracted, by precisely the same amount. Your observation of his ship has to be the same as his observation of his ship - since you are only the two observers, and you both have the same relative velocity, you must observe the same length contraction. If he sees your ship as 18 m long, then you would also see his (identical) ship as 18 m long.

Given the relationship between the contracted and proper length, we can find the relative velocity easily. Your measurement of your own ship is the proper length L_{p}, while your measurement of your friend's ship is the contracted length L^{\prime} :

$$
\begin{aligned}
L_{p} & =\gamma L^{\prime} \\
\Longrightarrow \gamma & =\frac{L_{p}}{L^{\prime}}=\frac{24}{18}=\frac{4}{3} \\
\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} & =\frac{4}{3} \\
1-\frac{v^{2}}{c^{2}} & =\frac{3^{2}}{4^{2}}=\frac{9}{16} \\
\frac{v^{2}}{c^{2}} & =1-\frac{9}{16}=\frac{7}{16} \\
v & =\sqrt{\frac{7}{16}} c=\frac{\sqrt{7}}{4} c \approx 0.661 c
\end{aligned}
$$

