
• exam 1 back tomorrow

• HW4 = solve the other 2 exam problems

- due tonight

• short quiz tomorrow 

- magnetic forces, fields from wires
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magnetism is not like electricity exactly.

magnets come only in +/- or N/S pairs
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how to concentrate the magnetic field? 
bend the wire in a loop

B =
µoI

2R

field is a factor π larger
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almost like a bar magnet 
(cases where they behave differently are oddballs)
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Want more? Superposition.

Many loops = many little B’s working together.
“solenoid”



practical application: speakers
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loop plane parallel to B - torque 
loop plane perpendicular to B - no force or torque

or ... magnetic moment (perp to area) aligns with field



dc motor : current loop wants to rotate in field
tries to align area perpendicular along field

either oscillate current, or push it hard enough to “flip”



linear motor - current pushes bar out (rail gun)



coils of wire or bar magnets - want to align with field



Chapter 2

Classical and Quantum Magnetism

In this Chapter an introduction will be started
on the actual origin of magnetism, which is re-
lated to our understanding of nature on the
atomic scale. As we will see, a classical picture
already provides a good starting point for the de-
scription of a number of phenomena, such as the
existence of diamagnetism and paramagnetism.
Then we will shortly review some elements of
quantum-mechanism, just enough to further ex-
tend our knowledge on magnetism at the atomic
level.

2.1 Orbiting Electrons
Based on an electron orbiting a nucleus with a
speed at a distance , see Fig. 2.1, we can calcu-
late the corresponding current by the product of
the electron charge and the orbital frequency, by
which the magnetic moment (Eq. 1.11) becomes:

− − − . (2.1)

Note that the minus sign is due to the negative
charge of an electron. Apart from a magnetic mo-
ment related to charge, the orbiting mass is
equivalent to an angular momentum :

× . (2.2)

Thus, and are pointing in opposite direction1

as you can see in Fig. 2.1. The ratio between these
quantities is called the gyromagnetic ratio:

− . (2.3)

Although this calculation is very simple, it turns
out that when the magnetic moment is solely
originating from the orbital motion, is correctly

1for positive charges, and are pointing in the same di-
rection, as we will see later on in the course
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Fig. 2.1: An electron orbiting its nucleus has an
orbital momentum due to the spinning mass,
but also possesses magnetic moment associated
with the spinning charge; note that the current
flows opposite to the direction of

given by this formula. In general, to account for
more complex situations an additional so-called
Landé factor is added to Eq. 2.3:

− . (2.4)

In fact, we may consider this factor as a fudge
factor to account for all the shortcomings of this
classical picture. As we will see later on in the
quantum-mechanical description (Sect. 2.5), the
intrinsic electron spin has , twice as large
as for orbiting electrons. But before we get to
this point, how large are these moments and mo-
menta anyway, just to get a feeling for the num-
bers involved? Assume we are dealing with hy-
drogen, any physics table book wil tell you that
the energy of the first Bohr-orbital is 13.6 eV at a
radius of 0.52 Å. Classically, this means the elec-
tron orbits a speed of . Filling in the
numbers in Eq. 2.1 and 2.2, we get ≈ ×

11
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− Am and ≈ − kgm /s, respectively.
As we will see in Sect. 2.5, these numbers will
turn out to be strongly related to what quantum-
mechanics is bringing us! Wait and see ...

2.2 Spin Precession

Upon the application of magnetic fields, we are
familiar with the Lorentz force to bring the elec-
tron in an orbital movement in space, deter-
mined by × . For electrons in free
space, this force field will bring the electrons in
an orbital motion at the cyclotron frequency. As
an example, this phenomenon is exploited in a
cyclotron where also free electrons are alternately
orbiting due to the Lorentz force and accelerated.
Also the well-known Van Allen belts around the
earth due to charged particles in the solar wind,
are simply due to cyclotron resonance.
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Fig. 2.2: The electron orbit in the plane sets up
an angular momentum that, due to the Lorentz
force, starts to rotate in the plane

However, electrons in solid state materials are
rigidly attached to their movement around the
nucleus, by which the magnitude of the elec-
tron’s angular momentum | | is conserved also
in the presence of magnetic fields. To illustrate
this, Fig. 2.2 shows the orbit of an electron in the

-plane, corresponding to an angular momen-
tum in the direction. The field applied along

deflects the orbit due to the Lorentz force, by
which the angular momentum changes its direc-
tion by , in Fig. 2.2 in the positive direc-
tion. As a result, the angular momentum starts
rotating around the direction of , much like a
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Fig. 2.3: The magnetic field exerts a torque on
the magnetic moment, by which it will precess
around the direction of

spinning wheel (gyroscope) rotating around the
earth’s gravitational field as you may remember
from classical mechanics.

But now we should try to find the frequency
of the precession in a more formal way. To start
with, the magnetic field induces a torque on the
the magnetic moment, see Fig. 2.3:

× , (2.5)

causing the moment to change its direction per-
pendicular to both and . In other words,
the moments start precessing around the direc-
tion of the magnetic field. According to classi-
cal mechanics, a torque is (by definition) equal
to the time derivative of the angular momentum,
which, combined with Eq. 2.3, brings us to the
equation of movement for :

× , (2.6)

From Fig. 2.3, we can further see that
, which is equal to . Here

we introduced the Larmor frequency of the
precessional movement of the magnetic moment.
Since the cross-product in Eq. 2.6 is simply

in magnitude, we find for the Larmor
frequency:

− . (2.7)

e- orbiting a nucleus has an orbital momentum L and a 
magnetic moment due to the orbit. 

e- have negative charge -- current is opposite to V, and L is 
opposite the magnetic moment



another type of 
moment - spin

• rough analogue is a spinning ball of charge

• looks like a tiny circulating current

• really, intrinsic angular momentum of particles

• more significant than orbital effect, but moment 
behavior is qualitatively similar



origin of magnetic moments?

• Bohr model & orbits is not right, but a start

• orbital motion of H atom = current loop

dipole moment generated = Bohr magneton

!µB = −
ge

2me

!L ≈ 9.27 × 10
−24

A/m
2

spin of electron provides another magnetic moment



reality: magnetism does come from L

QM picture 

moment comes from angular momentum

orbital momentum is important ...

... but there is also a spin angular momentum

Most materials of interest for us: 

orbital moments are negligible

spin moments dominate 



magnetism in real 
materials

• like dielectrics are electrically polarizable ...

• ... some materials are magnetically polarizable

• can be positive or negative

• B inside material is not the same as outside



µB ≈ 60 µeV/T kB ≈ 86 µeV/T
Center for Materials for Information Technology

an NSF Materials Science and Engineering Center

Types of Magnetism

• Paramagnetism

– In gases and molecular liquids and solids the individual ions, atoms, 

or molecules may have magnetic moments 

– the size of these moments ~ Bohr magneton

–  magnetic energy of one of these molecular magnets in a field of 1T 

is ~ cos ! 60ueV 

– compare to thermal energy of 25meV at RT  

– relatively weak magnetization field compared to the applied field, 

(M<<H) except at very low temperature

moments try to align with the field - your fridge



Center for Materials for Information Technology
an NSF Materials Science and Engineering Center

Types of Magnetism

• Diamagnetism

– no spin magnetic moment on an atom or molecule, orbital response 

dominates

– usually gives a magnetization opposite to the applied field. 

– extreme case of diamagnetism = superconductor.  

• type I superconductor - diamagnetic magnetization exactly 

cancels the applied field.

(we did this already)

moments try to align opposite in the field

degree of alignment per applied B = susceptibility

negative for diamagnets
positive for paramagnets
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In the limit of small magnetization, ! , we
can approximate the Langevin-formula by in
first order of , such that the magnetization re-
duces to:

(2.19)

In other words, the paramagnetic susceptibility
is given by:

with: , (2.20)

This is the well-known law of Curie, named af-
ter Pierre Curie, the husband of the famous Pol-
ish Marie Skłodowska-Curie. Together with Bec-
querel, they received in 1903 the Nobel prize for
physics, not for the contribution to magnetism
but, as we all know, for the discovery of ra-
dioactivity. Take good care, this susceptibility is
valid only for small , that is at high temperature
and/or low magnetic field.
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Fig. 2.11: A compilation of the susceptibility of
(almost all) elements with atomic number up to
100. Negative susceptibility corresponds to dia-
magnetism, positive corresponds to paramag-
netic elements. Elements with a very large sus-
ceptibility (such as Fe, Co, Ni, and Gd) are ferro-
magnetic, a property we will introduce in Chap. 3.
For diamagnetic elements, one sees that the sus-
ceptibility has the tendency to increase with , in
accordance with the model prediction in Sect. 2.3.

An estimate can be easily made similar to the
previous section. Take Mn with g/cm ,
and =56, giving × m− . At room
temperature in a field 800 kA/m (which corre-
sponds to roughly 1 T) the susceptibility ≈

× − . Similar to the diamagnetic suscep-
tibility, this is a rather small number, which is
generally true as can be seen from a compila-
tion in Fig. 2.11. The great difference is obvi-
ously the positive sign of the paramagnetic ,
and, moreover, by changing the field or temper-
ature it is possible to alter the magnetic respons
at will. If we cool down these Mn atoms to, say,

K, the susceptibility already becomes siz-
able, roughly 0.3.

Why certain materials are diamagnetic or
some paramagnetic is not easy to address with-
out additional knowledge on quantum mechan-
ics. Put simply, it comes down to the electronic
structure of the atom, only when a uncompen-
sated magnetic moment resides on the atom it
may respond paramagnetically. However, in
case the total magnetic moment of the atom is
zero, the individual orbits still behave diamag-
netically, which is true for a great number of ele-
ments, see again Fig. 2.11.

Finally, one should realize that the phe-
nomenon of paramagnetism, but also the earlier
treated diamagnetism, is certainly not limited to
solid state materials, since the effects arise solely
from the influence of magnetic fields on the or-
bits of electron systems. As an example, you may
have seen liquid O hanging on the poles of a
strong magnet, shown in Fig. 2.12, a beautiful
case of fluid paramagnetism. In solid state ma-
terials where atoms are brought closely together,
the interaction between the atomic orbitals may
become very important in stabilizing ferromag-
netic materials (Chap. 3-4), another class of mag-
netism that should not be confused with dia- or
paramagnetism.

Fig. 2.12: Fluid O as an ideal table-top demon-
stration of paramagnetic behavior.
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Fig. 2.13: The 1927 Solvay conference: bottom row (left to right): I. Langmuir, M. Planck, M. Curie, H.A.
Lorentz, A. Einstein, P. Langevin, Ch.E. Guye, C.T.R. Wilson, O.W. Richardson; middle row: P. Debeye, M.
Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L. de Broglie, M. Born, N. Bohr; top row:
A. Piccard, E. Henriot, P. Ehrenfest, Ed. Herzen, Th. de Donder, E. Schrödinger, E. Verschaffelt, W. Pauli, W.
Heisenberg, R.H. Fowler, L. Brillouin

2.5 Some Quantum-Mechanics
for Magnetism

This part is certainly not meant to give a detailed
or thorough analysis of quantum-mechanics, it
will serve as an introduction and reminder to its
basic ingredients, in particular when valuable for
magnetism. Quantum-mechanics developed at
and after the turn of the 20th century, a period
when physics was receiving great attention in so-
ciety. In Fig. 2.13 a large number of important
physicists from those days are displayed at the
Solvay conference in 1927. Quantum-mechanics
is about physics on the atomic scale, reformulat-
ing all the classical aspects we have encountered
so far. No longer can we exactly determine speed
and momentum of an electron, the charge is dis-
tributed in space and obeys a wave-like proba-
bility function, to an extent that the electron may
even ‘travel’ through the nucleus. Furthermore,
position, orbital momentum, and energy are no
langer continuous, they occur in discrete num-
ber.

In a central potential of a positive nucleus we
can separate the total wave function in a radial
and angular dependent part,
(see Fig. 2.14). For magnetism we are obviously
most interested in the angular momentum
since it determines magnetic moments. The clas-
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Fig. 2.14: Cartesian and spherical coordinates

sical equation (see 2.2) is in quantum-mechanics
replaced by Schrödinger’s equation in a central
(Coulomb) potential. It can be shown that the
square of the angular momentum has a special
role, the operator acts on the total wave func-
tion as:

×

− . (2.21)

Fig. 2.15: Spherical harmonics, here displayed for
wave functions with , with, from left to right,

− − . The direction is point-
ing vertically upward.

• Classical Argument gives correct 
formula

• Some of steps are suspect

• All materials show diamagnetism, 

often masked by other magnetic 
responses

• T independent

• All electrons contribute

• Some elements give positive 
susceptibility ... what is this?

• Paramagnetism



Center for Materials for Information Technology
an NSF Materials Science and Engineering Center

Types of Magnetism

• Ferromagnetism

– This type of magnetism is observed in the following metals: 

• Transition Metals Fe, Co, Ni 

• Lanthanides (rare earth) Gd, Tb, Dy, Ho, Er, Tm

• Many alloys and compounds (some of which contain none of these 
atoms)

– Ferromagnetism arises from the exchange interaction 

– quantum mechanical manifestation of the Coulomb interaction.  

– electrons can reduce their Coulomb energy by staying away from 

each other & increasing their spin angular momentum.

– The exchange interaction is relatively short range. 

• mostly neighboring atoms only

– positive interaction = neighbors parallel = FM



Total magnetic field

applied magnetic field
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Note that the direction of precession, as indicated
in the figure, is determined by the cross-product
of and , combined with being negative for
electrons (see again Eq. 2.3). The precession phe-
nomenon of spin systems plays a prominent role
in spin resonance techniques, such as the well-
known Magnetic Resonance Imaging for medical
applications. These techniques rely on ‘agitating’
spins at their specific Larmor frequency and will
be extensively discussed in Chapter ??.

2.3 Diamagnetism: from Fara-
day to Flying Frogs

In November 1845 Faraday suspended a piece of
glass between the poles of an electromagnet and
discovered that, when switching on the current,
the glass tended to set itself perpendicular to the
magnetic field. He found that a vast amount
of materials, including, e.g., vegetables and ani-
mal tissues, displayed this so-called diamagnetic
property, in striking contrast to the response of
magnetic iron or loadstone. In fact, what Faraday
found was that diamagnets are not attracted but
pushed away towards regions of smaller field
(what explains the tendency to rotate to the low-
field sides of Faraday’s electromagnet), in other
words the susceptibility is negative.

In the foregoing section (2.2) we have in fact
already observed the impact of magnetic fields
on orbiting electrons: both the magnetic moment
and angular momentum start to precess around
the field vector with frequency . In Fig. 2.4,
this is again illustrated, now for a magnetic mo-
ment precessing in the plane due to a field
along the axis. At this point it is important
to realize that the orbital frequency is extremely
high, , see Sect. 2.1, of the order − .
This is much faster than the typical Larmor fre-
quency in a field of, say, 1 T, corresponding to

− . In other words, the orbiting elec-
tron can be considered as a quasi-static circular
charged loop rotating along the axis. Thus, in
the direction of , we have a field-induced angu-
lar momentum , with the
inertia of a thin-walled spherical object. Using
Eq. 2.3, we can write for the change of magnetic
moment:

− . (2.8)

We have assumed that the gyromagnetic ratio for
such a spinning sphere is still given by Eq. 2.3.

You may verify that the magnetic moment is
given by with the charge of the (hol-
low) sphere. After dividing this by the angular
momentum , it is indeed found that .
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Fig. 2.4: Diamagnetism is simply produces by the
precession of the magnetic moments in the field
and is opposite to the field direction

To relate a single magnetic moment as given by
Eq. 2.8 to the spin susceptibility of a large collec-
tion of diamagnetically responding objects, we
have to multiply this by the number of moments
per volume2 ( ) to arrive at the magnetization,
and divide by the magnetic field . The
diamagnetic susceptibility (for its definition see
Eq. 1.23) is then3:

− . (2.9)

What is important in this expression is first its
negative sign: indeed the magnetization is al-
ways opposite to the field direction, as observed
experimentally. Secondly, we may ask ourselves
whether it may predict the susceptibility of dia-
magnetic elements or compounds. To do so, we
first have to consider the magnitude of . One
mole of matter consist of × parti-
cles corresponding to a mass of grams, with
the sum of proton and neutron number. In other
words, the number of particles per volume is

. For instance, for carbon ( g/cm ,
) this yields × m− . In-

serting the Bohr radius for , we find that ≈
2throughout this course, is used as a volume density of

magnetic moments
3this result changes slightly when all possible orientations

of are taken into account
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− × − , in perfect agreement with experimen-
tal value as shown for example in Fig. 2.11 on
page 17. Moreover, we expect to see the sus-
ceptibility raising with increasing atomic radius
( ∝ ), which is indeed in accordance with ex-
periment, in Fig. 2.11 you see the tendency of | |
to increase with the atom’s mass.

Another classical approach to diamagnetism
was proposed by Feynmann [5] in his well-
known Lectures on Physics. In his view, when
the magnetic field is turned on as in Fig. 2.1, an
electric field is induced in the plane of the orbit-
ing electron, obeying Faraday’s law of induction.
Assuming we have a steadily increase of , the
electric field is given by (Eq. 1.4):

− . (2.10)

As a result of the additional electric field, a
torque × will be induced of magnitude:

, (2.11)

which, together with Eq. 2.3, leads to a diamag-
netic susceptibility (almost) equal to our previ-
ous result of Eq. 2.9. Thus, in Feynmann’s model
diamagnetism is merely a consequence of Lenz
law: a changing magnetic flux affects the orbital
speed of the electrons, in such a way that it op-
poses the increase of magnetic field ( !),
and, due to the frictionless orbit of the electron,
remains active until the field strength is altered.

Fig. 2.5: Water is levitated at the top section of a
solenoid in the high-field lab at the University of
Nijmegen

The repulsive diamagnetic property is beauti-
fully exploited in a recent experiment at the Uni-
versity of Nijmegen (The Netherlands). In a very
strong static magnetic field a diamagnetic object

(e.g., a frog) is levitated in the upper part of the
solenoid where a strong gradient of the field ex-
ists. Although for ferromagnetic objects it can be
shown that they cannot be levitated, an object
with diamagnetic negative susceptibility is able
to find a local total energy minimum in space [6],
in other words it is levitated; see Fig. 2.5. The
same principle is in fact used for levitation of
a small permanent magnet above a diamagnetic
bismuth slab [7]. In 2000, Andrzej Geim obtained
the alternative IG Nobel price4 for these fabu-
lous experiments, although some people are re-
ally searching for novel applications to simulate,
e.g., anti-gravity experiments usually performed
in extremely expensive space missions.
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Fig. 2.6: Magnetic moment of a ultrathin film of
ferromagnetic Co (see Chap.3-5) deposited on a
GaAs substrate at TU/e. Although the diamag-
netic susceptibility of GaAs is extremely small, it
is clearly visible in the data due to the large vol-
ume fraction compared to the cobalt.

Finally, in studies on thin-film magnetism, the
diamagnetic nature of almost all materials can be
also a nuisance, a background signal one would
rather not like to observe at all. In Fig. 2.6 this
is illustrated in a measurement of the magnetic
moment of a extremely thin ferromagnetic cobalt
layer. What ferromagnetism is really about (in-
cluding the shaded part at low fields called hys-
teresis), you will learn in further on in the course
(Chap.3-5), for now assume this is a magnetic ef-
fect with in potential enormously large suscep-
tibilities and large magnetization. Nevertheless,
since these thin films are deposited on diamag-
netic substrates, the actual contribution may be-
come comparable to the ferromagnetic response.
In the example shown in the figure, the dia-
magnetic background is even dominant beyond

4see web-information on: www.improbable.com/ig/

total moment = diamagnetic GaAs (huge volume) + 
ferromagnetic Co (small volume)
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“solenoid” coil
N windings

air gap
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L

magnetic field amplifier - i.e., an electromagnet
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Chapter 2

Classical and Quantum Magnetism

In this Chapter an introduction will be started
on the actual origin of magnetism, which is re-
lated to our understanding of nature on the
atomic scale. As we will see, a classical picture
already provides a good starting point for the de-
scription of a number of phenomena, such as the
existence of diamagnetism and paramagnetism.
Then we will shortly review some elements of
quantum-mechanism, just enough to further ex-
tend our knowledge on magnetism at the atomic
level.

2.1 Orbiting Electrons
Based on an electron orbiting a nucleus with a
speed at a distance , see Fig. 2.1, we can calcu-
late the corresponding current by the product of
the electron charge and the orbital frequency, by
which the magnetic moment (Eq. 1.11) becomes:

− − − . (2.1)

Note that the minus sign is due to the negative
charge of an electron. Apart from a magnetic mo-
ment related to charge, the orbiting mass is
equivalent to an angular momentum :

× . (2.2)

Thus, and are pointing in opposite direction1

as you can see in Fig. 2.1. The ratio between these
quantities is called the gyromagnetic ratio:

− . (2.3)

Although this calculation is very simple, it turns
out that when the magnetic moment is solely
originating from the orbital motion, is correctly

1for positive charges, and are pointing in the same di-
rection, as we will see later on in the course
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Fig. 2.1: An electron orbiting its nucleus has an
orbital momentum due to the spinning mass,
but also possesses magnetic moment associated
with the spinning charge; note that the current
flows opposite to the direction of

given by this formula. In general, to account for
more complex situations an additional so-called
Landé factor is added to Eq. 2.3:

− . (2.4)

In fact, we may consider this factor as a fudge
factor to account for all the shortcomings of this
classical picture. As we will see later on in the
quantum-mechanical description (Sect. 2.5), the
intrinsic electron spin has , twice as large
as for orbiting electrons. But before we get to
this point, how large are these moments and mo-
menta anyway, just to get a feeling for the num-
bers involved? Assume we are dealing with hy-
drogen, any physics table book wil tell you that
the energy of the first Bohr-orbital is 13.6 eV at a
radius of 0.52 Å. Classically, this means the elec-
tron orbits a speed of . Filling in the
numbers in Eq. 2.1 and 2.2, we get ≈ ×
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− Am and ≈ − kgm /s, respectively.
As we will see in Sect. 2.5, these numbers will
turn out to be strongly related to what quantum-
mechanics is bringing us! Wait and see ...

2.2 Spin Precession

Upon the application of magnetic fields, we are
familiar with the Lorentz force to bring the elec-
tron in an orbital movement in space, deter-
mined by × . For electrons in free
space, this force field will bring the electrons in
an orbital motion at the cyclotron frequency. As
an example, this phenomenon is exploited in a
cyclotron where also free electrons are alternately
orbiting due to the Lorentz force and accelerated.
Also the well-known Van Allen belts around the
earth due to charged particles in the solar wind,
are simply due to cyclotron resonance.
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Fig. 2.2: The electron orbit in the plane sets up
an angular momentum that, due to the Lorentz
force, starts to rotate in the plane

However, electrons in solid state materials are
rigidly attached to their movement around the
nucleus, by which the magnitude of the elec-
tron’s angular momentum | | is conserved also
in the presence of magnetic fields. To illustrate
this, Fig. 2.2 shows the orbit of an electron in the

-plane, corresponding to an angular momen-
tum in the direction. The field applied along

deflects the orbit due to the Lorentz force, by
which the angular momentum changes its direc-
tion by , in Fig. 2.2 in the positive direc-
tion. As a result, the angular momentum starts
rotating around the direction of , much like a
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Fig. 2.3: The magnetic field exerts a torque on
the magnetic moment, by which it will precess
around the direction of

spinning wheel (gyroscope) rotating around the
earth’s gravitational field as you may remember
from classical mechanics.

But now we should try to find the frequency
of the precession in a more formal way. To start
with, the magnetic field induces a torque on the
the magnetic moment, see Fig. 2.3:

× , (2.5)

causing the moment to change its direction per-
pendicular to both and . In other words,
the moments start precessing around the direc-
tion of the magnetic field. According to classi-
cal mechanics, a torque is (by definition) equal
to the time derivative of the angular momentum,
which, combined with Eq. 2.3, brings us to the
equation of movement for :

× , (2.6)

From Fig. 2.3, we can further see that
, which is equal to . Here

we introduced the Larmor frequency of the
precessional movement of the magnetic moment.
Since the cross-product in Eq. 2.6 is simply

in magnitude, we find for the Larmor
frequency:

− . (2.7)

magnetic field 
exerts a torque 
on the moment

this causes 
precession about 

the field

how does this relate to NMR/MRI?

what happens to a moment in B?
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But now we should try to find the frequency
of the precession in a more formal way. To start
with, the magnetic field induces a torque on the
the magnetic moment, see Fig. 2.3:
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causing the moment to change its direction per-
pendicular to both and . In other words,
the moments start precessing around the direc-
tion of the magnetic field. According to classi-
cal mechanics, a torque is (by definition) equal
to the time derivative of the angular momentum,
which, combined with Eq. 2.3, brings us to the
equation of movement for :
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From Fig. 2.3, we can further see that
, which is equal to . Here

we introduced the Larmor frequency of the
precessional movement of the magnetic moment.
Since the cross-product in Eq. 2.6 is simply

in magnitude, we find for the Larmor
frequency:

− . (2.7)

electron orbit in the yz plane sets up an L
which, due to the Lorentz force, rotates in the xy plane

applying a magnetic field: spin precession



moments in a field: 

energy change ∆U = −!µ ·
!B

torque

|!τ | = −
dU

dθ
= −µB sin θ =

dL

dt

interaction with field 
leads to torque ...

torque leads to 
precession
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From Fig. 2.3, we can further see that
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in magnitude, we find for the Larmor
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− . (2.7)

⇒ !ωL = −γ !B =
ge

2me

!B ≈ 14 GHz/T

dL = L sin θ dϕ

dϕ = ωL dt

!τ = !µ × !B =

d!L

dt
= γ!L × !B

minimizing U means parallel to field

making torque zero means parallel to field

�τ = �µ× �B



so what?
• local value of B depends on environment

• so precession frequency depends on environment 

- electron density, electronegativity, induction

• local environment is a function of bonding

• if you can measure the precession frequency, you can 
ID atom + environment

• (cannot really explain this without quantum)





H atoms in 
diff environments
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diff frequencies

ratio of peaks ... 
ratio of number of atoms
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This statement is based on the experimental fact, mentioned in the opening of
Chapter 29, that isolated magnetic poles (monopoles) have never been detected and
perhaps do not exist. Nonetheless, scientists continue the search because certain theo-
ries that are otherwise successful in explaining fundamental physical behavior suggest
the possible existence of monopoles.

30.7 Displacement Current and the General
Form of Ampère’s Law

We have seen that charges in motion produce magnetic fields. When a current-
carrying conductor has high symmetry, we can use Ampère’s law to calculate the
magnetic field it creates. In Equation 30.13, ! B ! ds " #0I, the line integral is over
any closed path through which the conduction current passes, where the conduction
current is defined by the expression I " dq/dt. (In this section we use the term
conduction current to refer to the current carried by the wire, to distinguish it from a
new type of current that we shall introduce shortly.) We now show that Ampère’s law
in this form is valid only if any electric fields present are constant in time.
Maxwell recognized this limitation and modified Ampère’s law to include time-varying
electric fields.

We can understand the problem by considering a capacitor that is being charged as
illustrated in Figure 30.25. When a conduction current is present, the charge on the
positive plate changes but no conduction current exists in the gap between the plates. Now
consider the two surfaces S1 and S2 in Figure 30.25, bounded by the same path P.
Ampère’s law states that ! B ! ds around this path must equal #0I, where I is the total
current through any surface bounded by the path P.

When the path P is considered as bounding S1, ! B ! ds " #0I because the
conduction current passes through S1. When the path is considered as bounding S2,
however, ! B ! ds " 0 because no conduction current passes through S2. Thus, we
have a contradictory situation that arises from the discontinuity of the current!
Maxwell solved this problem by postulating an additional term on the right side
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Figure 30.23 The magnetic field lines of a bar magnet form
closed loops. Note that the net magnetic flux through a closed
surface surrounding one of the poles (or any other closed surface)
is zero. (The dashed line represents the intersection of the surface
with the page.)
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Figure 30.24 The electric field lines surrounding an electric
dipole begin on the positive charge and terminate on the negative
charge. The electric flux through a closed surface surrounding one
of the charges is not zero.
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Figure 30.25 Two surfaces S1 and
S2 near the plate of a capacitor are
bounded by the same path P. The
conduction current in the wire
passes only through S1. This leads
to a contradiction in Ampère’s law
that is resolved only if one postu-
lates a displacement current
through S2.

there is current through S1,
but not through S2.

violates Ampere’s law?
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mined by × . For electrons in free
space, this force field will bring the electrons in
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an example, this phenomenon is exploited in a
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orbiting due to the Lorentz force and accelerated.
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However, electrons in solid state materials are
rigidly attached to their movement around the
nucleus, by which the magnitude of the elec-
tron’s angular momentum | | is conserved also
in the presence of magnetic fields. To illustrate
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spinning wheel (gyroscope) rotating around the
earth’s gravitational field as you may remember
from classical mechanics.

But now we should try to find the frequency
of the precession in a more formal way. To start
with, the magnetic field induces a torque on the
the magnetic moment, see Fig. 2.3:
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causing the moment to change its direction per-
pendicular to both and . In other words,
the moments start precessing around the direc-
tion of the magnetic field. According to classi-
cal mechanics, a torque is (by definition) equal
to the time derivative of the angular momentum,
which, combined with Eq. 2.3, brings us to the
equation of movement for :
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From Fig. 2.3, we can further see that
, which is equal to . Here

we introduced the Larmor frequency of the
precessional movement of the magnetic moment.
Since the cross-product in Eq. 2.6 is simply

in magnitude, we find for the Larmor
frequency:

− . (2.7)

e- orbiting a nucleus has an orbital momentum L and a 
magnetic moment due to the orbit. 

e- have negative charge -- current is opposite to V, and L is 
opposite the magnetic moment


