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electrical energy
& capacitance

• today & tomorrow

• first: wrap up Gauss’ law, then potential

• capacitors/dielectrics tomorrow

• rest of the week: circuits/current/resistance

• NEXT MON: exam I

problem-based, cumulative

more details throughout the week
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PE = (1 due to 2) = (2 due to 1)

PE = (E to bring 1 close to 2)
 (E to bring 2 close to 1)

PE = (E required to build this thing)



oh noes, what about three charges?
still just pairs.



4.2 Electric Potential 99

the potential energy is, the energy of this configuration of charges relative to just having q1 all by itself. If
q2 is fixed, it also takes PE =keq1q2/r12 to bring in q1. Thus, it takes PE =keq1q2/r12 to build our system
of two charges, no matter how we do it:

PEtwo charges = PE(1 due to 2) = PE(2 due to 1) = q2V1 = q1V2 =
keq2q1

r12
(4.15)

As mentioned above, if the charges are of the same sign, PE is positive, and work must be done by an
external force to bring the charges together. If they are of opposite charges, PE is negative, and negative
work must be done to keep the charges from accelerating toward each other as they are brought together.
In other words, work must be done to keep the charges apart. Another way to view the potential energy of
the pair of charges is to think about how much kinetic energy would be gained if we let one of them loose
again. If we have a pair of charges with an electrical potential energy of, say, 1 J with both charges fixed,
the charges can gain between them 1 J of kinetic energy after being let loose. If one stays fixed, the other
gets a full 1 J. If both charges are identical and both move, they each get 0.5 J.
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Figure 4.6: (a) If the charge q1 is removed, a potential keq2/r12 exists at point P due to charge q2 (b) Similarly, the charge q1

gives a potential keq1/r12 at point P �. (c) Either way we build our system of charges, the potential energy of the system of two
charges is just q2V1 =q1V2, or keq1q2/r12.

What if we have several charges? Just to be concrete, take the system of three point charges in Figure 4.7.
We can obtain the total potential energy of this system by calculating the PE for every pair combination of
charges and adding the results together. Since potential and potential energy are scalars, we don’t need to
worry about components – this is just an algebraic sum:

PE = PE1&2 + PE2&3 + PE1&3 = PE2&1 + PE3&2 + PE3&1 = ke

�
q1q2

r12
+

q1q3

r13
+

q2q3

r23

�
(4.16)

Figure 4.7: A system of three point charges. Finding the
total potential energy is just a matter of adding up the po-
tential of pair combinations of charges.

PH 102 / General Physics II Dr. LeClair



100 4.2 Electric Potential

Note that it doesn’t matter what the order we sum them in, or if we transpose the labels – PE1&2 is the

same thing as PE2&1, and r13 is the same as r31, just like the example with two charges above.
v

What does this really mean, physically? It is the same whether we have two charges or three or a million.

What we are really summing up is the energy required to build this particular configuration of charges.

Imagine that q1 is fixed at the position shown in Figure 4.7, but that q2 and q3 are at infinity. The work

that must be done to bring q2 from infinity to its position near q1 is PE1&2 = keq1q2/r12, which is the

first term in Equation 4.16. The last two terms represent the work required to bring q3 from infinity to its

position near q1 and q2, which involves the interaction with q1 (the second term in Equation 4.16) and the

interaction with q2 (the third term in Equation 4.16). Compare this with Equation 4.15. Again, the result

is independent of the order in which the charges are moved in from infinity.

We can write this more succinctly as a sum over all the charges:
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(4.17)
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Here we color-coded the like terms for clarity. Basically, first we pick some charge j, and sum over all its

pairings with the other charges i, making sure not to pair the charge with itself. Here we have the factor

1
2 because the sum as written would count every pair of charges twice – since the pair 1&3 is the same as

the pair 3&1. Think about that for a second, and reassure yourself that the factor
1
2 is necessary. (If you

are not familiar with summations, don’t worry. We will only ever deal with a few charges at once.) For any

arbitrary number of charges N , we can just change the limits on the sum:

PEtotal =
1

2

N�

j

N�

i �=j

keqiqj

rij
(4.20)

The double-sum notation above means “take the charge j = 1, and sum over all the other charges i =

2, 3, 4, . . . N , then take the charge j = 2, and sum over the other charges i = 1, 3, 4 . . .N, and so on, until

j =N .” Again, this counts every pair twice, hence the factor
1
2 .

4.2.2.1 Electrical Energy in a Crystal Lattice
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Figure 4.8: (a) A crystal consisting of a cube of

−e negative charges, with a single +e charge at the

center of the cube. The potential energy of the ar-

rangement of nine charges is a sum over potential

energy of all pairs. (b) There are four types of pairs

involved in the sum.17

What good is being able to find the energy of a large number of

charges? Well, for one, this is one way to compute the stability

of various crystal lattices. As an example, let us calculate the

potential energy of eight negative charges on the corners of a

cube of side b, with a single positive charge in the center. We

will say each negative charge has −e, while the single positive

vIf you are into the math, that means we sum over all possible combinations, nCk, not permutations, nPk, so we do not
count any pair more than once.

Dr. LeClair PH 102 / General Physics II



The second approximation we need is more straightforward to find. We just write down r+r−, using the approximate forms

above, and once again drop terms that have d2/r2
in them:

r+r− ≈ r
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«
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«
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9. 15 points. Five identical point charges +q are arranged in two different manners as shown below - in once case as

a face-centered square, in the other as a regular pentagon. Find the potential energy of each system of charges, taking

the zero of potential energy to be infinitely far away. Express your answer in terms of a constant times the energy of two

charges +q separated by a distance a. Bonus (3 points): could one make a two-dimensional repeating crystal with either

of these arrangements? Justify your answer.

a

+q

a

+q

Using the principle of superposition, we know that the potential energy of a system of charges is just the sum of the

potential energies for all the unique pairs of charges. The problem is then reduced to figuring out how many different

possible pairings of charges there are, and what the energy of each pairing is. The potential energy for a single pair of

charges, both of magnitude q, separated by a distance d is just:

PEpair =
keq

2

d

Since all of the charges are the same in both configurations, all we need to do is figure out how many pairs there are in

each situation, and for each pair, how far apart the charges are.

How many unique pairs of charges are there? There are not so many that we couldn’t just list them by brute force - which

we will do as a check - but we can also calculate how many there are. In both configurations, we have 10 charges, and we

want to choose all possible groups of 2 charges that are not repetitions. So far as potential energy is concerned, the pair

(2, 1) is the same as (1, 2). Pairings like this are known as combinations, as opposed to permutations where (1, 2) and (2, 1)
are not the same. Calculating the number of possible combinations is done like this:

i

ways of choosing pairs from five charges =

 
5

2

!
=

5C2 =
5!

2! (5− 2)!
=

5 · 4 · 3 · 2 · 1

2 · 1 · 3 · 2 · 1
= 10

So there are 10 unique ways to choose 2 charges out of 5. First, let’s consider the face-centered square lattice. In order to

enumerate the possible pairings, we should label the charges to keep them straight. Label the corner charges 1−4, and the

center charge 5 (it doesn’t matter which way you number the corners, just so long as 5 is the middle charge). Then our

possible pairings are:

iA nice discussion of combinations and permutations is here: http://www.themathpage.com/aPreCalc/permutations-combinations.htm

what is the potential energy of the “crystal”
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So there are 10 unique ways to choose 2 charges out of 5. First, let’s consider the face-centered square lattice. In order to

enumerate the possible pairings, we should label the charges to keep them straight. Label the corner charges 1−4, and the
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possible pairings are:
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(1, 2) (1, 3) (1, 4) (1, 5)

(2, 3) (2, 3) (2, 5)

(3, 4) (3, 5)

(4, 5)

And there are ten, just as we expect. In this configuration, there are only three different distances that can separate a
pair of charges: pairs on adjacent corners are a distance a

√
2 apart, a center-corner pairing is a distance a apart, and a far

corner-far corner pair is 2a apart. We can take our list above, and sort it into pairs that have the same separation:

Table 2: Charge pairings in the square lattice

#, pairing type separation pairs

4, center-corner a (1, 5) (2, 5) (3, 5) (4, 5)
4, adjacent corners a

√
2 (1, 4) (3, 4) (2, 3) (1, 2)

2, far corner 2a (1, 3) (2, 4)

And we are nearly done already. We have four pairs of charges a distance a apart, four that are a
√

2 apart, and two that
are 2a apart. Write down the energy for each type of pair, multiply by the number of those pairs, and add the results
together:

PEsquare = 4 (energy of center-corner pair) + 2 (energy of far corner pair) + 4 (energy of adjacent corner pair)

= 4
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For the pentagon lattice, things are even easier. This time, just pick one charge as “1”, and label the others from 2-5 in a
clockwise or counter-clockwise fashion. Since we still have 5 charges, there are still 10 pairings, and they are the same as
the list above. For the pentagon, however, there are only two distinct distances - either charges can be adjacent, and thus
a distance a apart, or they can be next-nearest neighbors. What is the next-nearest neighbor distance?

In a regular pentagon,ii each of the angles is 108◦, and in our case, each of the sides has length a, as shown below. We can
use the law of cosines to find the distance d between next-nearest neighbors.

1
0
8
o

d
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d2 = a2 + a2 − 2 · a · a cos 108◦ = 2a2 (1− cos 108◦)

=⇒ d = a
√

2− 2 cos 108◦ = aφ ≈ 1.618a

iiSee http://www.jimloy.com/geometry/pentagon.htm
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9. 15 points. Five identical point charges +q are arranged in two different manners as shown below - in once case as

a face-centered square, in the other as a regular pentagon. Find the potential energy of each system of charges, taking

the zero of potential energy to be infinitely far away. Express your answer in terms of a constant times the energy of two

charges +q separated by a distance a. Bonus (3 points): could one make a two-dimensional repeating crystal with either

of these arrangements? Justify your answer.
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Using the principle of superposition, we know that the potential energy of a system of charges is just the sum of the

potential energies for all the unique pairs of charges. The problem is then reduced to figuring out how many different

possible pairings of charges there are, and what the energy of each pairing is. The potential energy for a single pair of

charges, both of magnitude q, separated by a distance d is just:
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Since all of the charges are the same in both configurations, all we need to do is figure out how many pairs there are in

each situation, and for each pair, how far apart the charges are.

How many unique pairs of charges are there? There are not so many that we couldn’t just list them by brute force - which

we will do as a check - but we can also calculate how many there are. In both configurations, we have 10 charges, and we

want to choose all possible groups of 2 charges that are not repetitions. So far as potential energy is concerned, the pair

(2, 1) is the same as (1, 2). Pairings like this are known as combinations, as opposed to permutations where (1, 2) and (2, 1)
are not the same. Calculating the number of possible combinations is done like this:
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So there are 10 unique ways to choose 2 charges out of 5. First, let’s consider the face-centered square lattice. In order to

enumerate the possible pairings, we should label the charges to keep them straight. Label the corner charges 1−4, and the

center charge 5 (it doesn’t matter which way you number the corners, just so long as 5 is the middle charge). Then our

possible pairings are:

iA nice discussion of combinations and permutations is here: http://www.themathpage.com/aPreCalc/permutations-combinations.htm
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we just have to sum the energy of all
unique pairs of charges.

so how many are there?
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For the pentagon lattice, things are even easier. This time, just pick one charge as “1”, and label the others from 2-5 in a
clockwise or counter-clockwise fashion. Since we still have 5 charges, there are still 10 pairings, and they are the same as
the list above. For the pentagon, however, there are only two distinct distances - either charges can be adjacent, and thus
a distance a apart, or they can be next-nearest neighbors. What is the next-nearest neighbor distance?

In a regular pentagon,ii each of the angles is 108◦, and in our case, each of the sides has length a, as shown below. We can
use the law of cosines to find the distance d between next-nearest neighbors.
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Rocksalt Rutile
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travel along surface:
E perpendicular to path 

everywhere

no work done!
can move on surface for free

electric force is
conservative ...

potential energy depends only 
on position, not path

Potential & Conductors
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We will see much more of this in the coming chapters, and it will begin to make more sense!
Batteries are one example of a constant voltage source, which we will cover in more detail in

Chapter 6, and the wall outlets in your house are another example of a voltage source (though this
voltage is not strictly constant, see Chapter 9). Ideal textbook voltage sources always supply a
constant potential difference, ∆V . Real voltage sources always have restrictions, a primary one being
the amount of power that can be sourced. Below are circuit diagram symbols for constant voltage
sources: the first two represents batteries, the last is a generic symbol for any more complicated
sort of voltage source:

Circuit diagram symbol for voltage sources:

Batteries: + – + –

General constant voltage source: ✒✑
✓✏
+ –

Now that we know a bit about voltage and conductors, we are moving closer to being able
to describe simple electric circuits. Presently, we will introduce our first real circuit element, the
capacitor.

4.6 Capacitance

Figure 4.13: A parallel-plate capacitor con-

sists of two conducting plates of area A, sep-

arated by a distance d. The plates have equal

and opposite charges, and the capacitance of

this structure is C =�0A/d.

A capacitor is an electronic component used to store elec-
tric charge, it is used in essentially any electric circuit you can
name. Capacitors are at the heart of both Random Access
Memory (RAM) and flash memory, besides being crucial for
nearly any sort of power supply. It is one of the fundamen-
tal building blocks for electronics, and the first we will meet.
Figure 4.13 shows a typical design for a capacitor – two metal
plates with some special stuff in between. It is hard to be-
lieve complicated devices like computers rely on such a simple
construction, but it is true!

A typical capacitor consist of two parallel metal plates, sep-
arated by a distance d. When used in a circuit, the plates are
connected to the positive and negative terminals of a voltage
source such as a battery. An ideal voltage source insists that
the two plates have a voltage difference of ∆V , and this has
the effect of pulling electrons off of one plate, leaving it with a
net positive charge +Q, and transferring these electrons to the
second plate, leaving it with a net negative charge −Q. The
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