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What is allowed?

• relativity: physics is the same for all observers

• so light travels at the same speed for everyone

• so what?
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how fast does the dart how fast does light go?

we can’t be consistently right in both cases
but if light obeys velocity addition, logical 
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Consequences:

• the passage of time is relative

• finite light speed ... "now" is subjective

• the rate your clock moves depends

• speed of light is a cosmic speed limit

• weird, but no logical problems!
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Rate of time passage
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Joe bounces a laser off of some mirrors
he counts the round trips

this measures distance
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Rate of time passage
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Moe sees the boxcar move;
once the light is created, it does not.

Moe sees a triangle wave
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So what?

• Moe sees light travel farther than Joe

• If the speed of light is the same ... 

- Moe thinks it takes longer!

• More time passes for Moe!
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Time dilation

• time slows down moving observers!

• experimentally observable!

• 747 experiment with atomic clocks

• GPS relies on it

• particle accelerators / decay
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Twin “paradox”

• One twin stays on earth

• One on a rocket at 80% of light speed

• 10 years pass on earth

• only 6 years pass on the ship

• Merely surprising; no logical or physical paradox

• Is this a form of time travel? 
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girl: 
nova observed after

boy: 
distance = (girl’s distance contracted) - (closing rate)

girl: 
distance = (her to boy) + (boy to nova, un-contracted)
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Algebra ensues ...

• have 2 equations in x, x’ and t, t’ ... 

• solve for x’ in terms of x, t’ in terms of t
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and unprimed on the other, we arrive the transformations between positions measured by moving
observers in their usual form:

Transformation of distance between reference frames:

x⇤ = � (x� vt) (1.37)

x = �
�
x⇤+ vt ⇤

⇥
(1.38)

Here (x, t) is the position and time of an event as measured by an observer in O stationary to
it. A second observer in O⇤, moving at velocity v, measures the same event to be at position
and time (x⇤, t ⇤).

These equations include the effects of length contraction and time dilation we have already de-
veloped, as well as including the relative motion between the observers. If we use Eqs. 1.35 and 1.36
together, we can also arrive at a more direct expression to transform the measurement times as well.
To start, we’ll take Eq. 1.37 as written, and substitute it into Eq. 1.38:

x = �
�
x⇤+ vt ⇤

⇥
(1.39)

= �
�
� (x� vt)+ vt ⇤

⇥
(1.40)

= �2x� �2vt + �vt ⇤ (1.41)

So far its a bit messy, but it will get better. Now let’s solve that for t ⇤. A handy relationship we will
make use of is

�
1� �2⇥/�2 =�v2/c2, which you should verify for yourself.

�vt ⇤ =
�
1� �2⇥x+ �2vt (1.42)

=⇥ t ⇤ = �t +
�
1� �2⇥x

�v
(1.43)

= �
⌥

t +
1� �2

�2

⇤x
v

⌅�
(1.44)

= �
 
t� vx

c2

⌦
(1.45)

And there we have it, the transformation between time measured in different reference frames. A
similar procedure gives us the reverse transformation for t in terms of x⇤ and t ⇤.

Time measurements in different non-accelerating reference frames:

t ⇤ = �
⇤

t� vx
c2

⌅
(1.46)

t = �
⇧

t ⇤+
vx⇤

c2

⌃
(1.47)

Here (x, t) is the position and time of an event as measured by an observer in O stationary to
it. A second observer in O⇤, moving at velocity v, measures the same event to be at position
and time (x⇤, t ⇤).

The first term in this equation is just the time it takes light to travel across the distance x from
point P, corrected for the effects of time dilation we now expect. The second term is new, and it
represents an additional offset between the clock on the ground and the one in the car, not just one
running slower than the other. What it means is that events seen by the girl in frame O do not happen
at the same time as viewed by the boy in O⇤!
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Summary

• simultaneity is relative ... so “now” is ill-defined!

• rate of time passage is relative

- moving observers: less time passes

• lengths along direction of motion are contracted

- but not in own rest frame

• can relate times & positions for observers
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This is perhaps more clear to see if we make two different measurements, and try to find the
elapsed time between two events. If our girl in frame O sees one even take place at position x1 and
time t1, labeled as (x1, t1), and a second event at x2 and t2, labeled as (x2, t2), then she would say
that the two events were spatially separated by �x=x1�x2, and the time interval between them was
� t =t1�t2. If we follow the transformation to find the corresponding times that the boy observes, t ⇥1
and t ⇥2, we can also calculate the boy’s perceived time interval between the events, � t ⇥:

Elapsed times between events in non-accelerating reference frames:

� t ⇥ = t ⇥1 � t ⇥2 = ⇥
�

� t � v�x
c2

⇥
(1.48)

If observer in O stationary relative to the events (x1, t1) and (x2, t2) measures a time difference
between them of � t = t1�t2 and a spatial separation �x=x1 � x2, an observer in O⇥ measures
a time interval for the same events � t ⇥. Events simultaneous in one frame (� t = 0) are only
simultaneous in the other (� t ⇥=0) when there is no spatial separation between the two events
(�x=0).

For two events to be simultaneous, there has to be no time delay between them. For the girl to
say the events are simultaneous requires that she measure � t =0, while for the boy to say the same
requires � t ⇥ = 0. We cannot satisfy both of these conditions based on Eq. 1.48 unless there is no
relative velocity between observers (v=0), or the events being measured are not spatially separated
(�x = 0). This means two observers in relative will only find the same events simultaneous if the
events are not spatially separated! Put simply, events are only simultaneous in both reference
frames if they happen at the same spot. At a given velocity, the larger the separation between the
two events, the greater the degree of non-simultaneity. Similarly, for a given separation, the larger
the velocity, the greater the discrepancy between the two frames. This is sometimes called “failure
of simultaneity at a distance.”

In the end, this is our general formula for time dilation, including events which are spatially
separated. If we plough still deeper into the consequences of special relativity and simultaneity, we
will find that our principles of relativity have indeed preserved causality - cause always precedes
effect - it is just that what one means by “precede” depends on which observer you ask. What
relativity says is that cause must precede its effect according to all observers in inertial frames,
which equivalently prevents both faster than light travel or communication and influencing the past.

1.3.4.1 Summary of sorts: the Lorentz Transformations

We are now ready to make a summary of the relativistic transformations of time and space. Let us
consider two reference frames, O and O⇥, moving at a constant velocity v relative to one another.
For simplicity, we will consider the motion to be along the x and x⇥ axes in each reference frame, so
the problem is still one-dimensional. The observer in frame O measures an event to occur at time
t and position (x,y,z). The event is at rest with respect to the O frame. Meanwhile, the observer in
frame O⇥ measures the same event to take place at time t ⇥ and position (x⇥,y⇥,z⇥). Based on what we
have learned so far, we can write down the general relations between space and time coordinates in
each frame, known as the Lorentz transformations:

Lorentz transformations between coordinate systems:

• for events to be simultaneous ...
- both time intervals must be zero

• this can only happen if 
- events are not spatially separated
- no relative motion

• this means defining “now” is ill-defined ...
- not great for nowism

One more problem: flashlight on a rocketship?
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Adding velocities

Say car is 0.75c, ball is 0.5c off of car ... 
adding as normal, ball at 1.25c relative to ground?

clearly not OK ... account contraction/dilation



Adding speeds correctly
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t = �

✓
t0 +

vax0

c2

◆
= �

✓
t0 +

vav0
bt0

c2

◆
(1.47)

Now we have the displacement of the ball x and the time t as measured by the observer on
the ground in O. The velocity in O is just the ratio of x to t:

vb =
x

t
(1.48)

=
� (v0

bt0 + vat0)

�
⇣
t0 +

vav0
bt0

c2

⌘ (1.49)

=
v0

b + v0
a

1 + vavb

c2

(1.50)

For the last step, we divided out �t0 from everything, by the way. So, this is the proper
way to compute relative velocity of the ball observed from the ground, consistent with our
framework of relativity.

velocity of ball observed from the ground = vb =
va + v0

b

1 +
vav0

b

c2

(1.51)

In the limiting case that the velocities are very small compared to c, then it is easy to
see that the expression above reduces to vb = va +v0

b – the velocity of the ball measured
from the ground is the velocity of the car relative to the ground plus the velocity of the
ball relative to the car. But, this is only true when the velocities are small compared to c.4
Similarly, we could solve this equation for v0

b instead and relate the velocity of the ball as
measured from the car to the velocities measured from the ground:

velocity of ball observed from the cart = v0
b =

vb - va

1 - vavb

c2

(1.52)

The equation above allows us to calculate the velocity of the ball as observed from the
car if we only had ground-based measurements. Again, for low velocities, we recover the
expected result v0

b =vb-va. What about the velocity of the cart? We don’t need to transform
it, since it is already the relative velocity between the frames O and O0, and hence between
the ground-based observer and the car. We only need the velocity addition formula when
a third party is involved. Out of the three relevant velocities, we only ever need to know
two of them.

So this is it. This simple formula is all that is needed to properly add velocities and
obey the principles of relativity we have put forward. Below, we put this in a slightly more
general formula.

Relativistic velocity addition:
We have an observer in a frame O, and a second observer in another frame O0 who
are moving relative to each other at a velocity v. Both observers measure the veloc-
ity of another object in their own frames (vobj and v0

obj). We can relate the velocities
measured in the different frames as follows:

vobj =
v + v0

obj

1 +
vv0

obj
c2

v0
obj =

vobj - v

1 -
vvobj
c2

(1.53)

Again, vobj is the object’s velocity as measured from the O reference frame, and vobj is
its velocity as measured from the O0 reference frame.

4 Or, more precisely, when the product of the velocities is small compared to c2.v’obj = 0.5c
v = 0.75c 

now we get vobj = 0.91c
never ends up with v > c ! (add or subtract? do this as normal, 

correct formula follows)
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Our claim at the time was that both Moe and Joe should measure the same speed of light.
Does our new velocity addition formula work for this case?

Joe

|!v| = 0.9c

|!v| = c

Moe

bflO

O’ y
′

x
′

y

x

Fig. 1.16 Joe is traveling on a rocket at |~v| =
0.99c, while Moe on the ground shines a flash-
light parallel to Joe’s path. Both Joe and Moe
observe the light from the flashlight to travel at
|~v| = c, consistent with our relativistic velocity
addition formula!

In this case, Joe is on a rocket (frame O0) moving at vrocket =0.99c relative to Moe on the
ground. Moe knows that in his frame O, the light from the flashlight travels away from
him at velocity vlight = c. What is the velocity of light observed by Joe in the rocket, vlight0 ,
if we use the velocity addition formula? All we have to do is subtract the speed of light as
measured by Moe from Joe’s speed on the rocket ship, according to the second equation in
1.53:

v0
light =

vlight - vrocket

1 -
vrocketvlight

c2

(1.57)

=
c - 0.99c

1 - (0.99c)(c)
c2

(1.58)

=
0.01c

1 - 0.99
= c (1.59)

Lo and behold, the thing works! Our velocity addition formula correctly calculates that
both Joe and Moe have to measure the same speed of light, since the speed of light is the
same when observed from any reference frame. We shouldn’t be too surprised, however:
the velocity addition formula was constructed to behave in exactly this way. How about if
Joe holds the flashlight while in the rocket, what is the speed of light as measured by Moe
on the ground? Now we have to add the velocities of the light coming out of the rocket and
the velocity of the rocket itself, according the first equation in 1.53. Still no problem:

vlight =
vrocket + v0

light

1 +
vrocketv

0
light

c2

(1.60)

=
0.99c + c

1 + (0.99c)(c)
c2

(1.61)

=
1.99c

1 + 0.99
= c (1.62)

In the end, we have succeeded in constructing a framework of mechanics that keeps the
speed of light invariant in all reference frames, and answers (nearly) all the questions raised
at the beginning of the chapter.

Is everything relative then?
Not quite!

• All observers will agree on an objects rest length

what if Joe has the light?
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Is everything relative then?
Not quite!

• All observers will agree on an objects rest length

(add or subtract? do this as normal, 
correct formula follows)







A view of spacetime

• 2 observers in different frames (O, O’)

• observer in O’ traveling at v relative to O

• their origins coincide at t=t’=0

• light pulse emitted from origin at this moment

• where is light pulse at a later time?



Distance light pulse covers?

r =
p

x

2 + y

2 + z

2 = c�t

r

0 =
p

x

02 + y

02 + z

02 = c�t

0

according to O:

according to O’:

no surprises: we know how to relate distances and times
but look more closely ...



They can agree on ...

For the light pulse, both can agree on:

s2 = r2 - c2�t2 = r02 - c2�t02 = 0

s is the spacetime interval
like the distance formula, but with time as a coordinate

time coordinate is imaginary (mathematically)
metric ‘signature’ is +++-

all observers can agree on this - invariant
even though they can’t with dist, time separately



3 classes of intervals

• r = spatial separation of events

• t = time between events

• s2 < 0 ... separation too big for light to cover

• s2 > 0 ... separation small enough for light

• s2 = 0 ... an interval traveled by light

s2 = r2 - c2�t2



• in time t, light goes farther than dist btw events

• i.e., events close enough photon could be at both

• causal connection is possible

• OTOH: events cannot be simult. in any frame

- for that, need time interval zero => s2>0

• clear time ordering of events for given observer

s2 = r2 - c2�t2 < 0



• if we talk about the motion of objects?

• on these paths, r < ct, so speed is less than c

• these are ‘time-like’ paths particles can follow

• paths along with causal connections possible

• light covers larger intervals

s2 = r2 - c2�t2 < 0



• now r > ct ... events too far apart for light!

• “space-like” intervals; causality impossible

• can’t speak of past/future ordering

• can find a frame in which they are simult.

• so far apart even light can’t be at both events

s2 = r2 - c2�t2 > 0



types of intervals

• s2 > 0 ... space-like, impossible paths

- no absolute ordering, simultaneity relative

• s2 < 0 ... time-like, particle paths

- time ordering is absolute 

• s2 = 0 ... light paths



spacetime diagrams
• “Minkowski diagrams”

• way of visualizing intervals

• typically 1 spatial dimension + time
ct

x

photon trajectory

rocket trajectory

particle at rest

object paths 
= 

“worldlines”

path through 
space & time



ct

x

your past

your future

your future at t

your world line

outside cone: no 
causal connection

only see outside 
events later

inside cone:
can be part of your 

present or past



ct

xevent A

event B

event C

A & C:  x > ct ... space-like ... no causal connection
A & B:  x < ct ... time-like ... can be causal connection

look at it like a triangle:
time leg is shorter = space-like = acausal
distance leg is shorter = time-like = possibly causal



Summary

• rate of time passage is relative

• lengths along direction of motion are contracted

• can relate times & positions for observers

• simultaneity is relative ... so “now” is ill-defined!

• can place constraints on causality

• much more on energy & momentum ...
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General relativity
• gravity is masses “bending” spacetime

• earth’s worldline bends around the sun

• what if world lines bent so much they looped?

http://physics.highpoint.edu/~mdewitt/phy1050

http://physics.highpoint.edu/~mdewitt/phy1050/?page=week6
http://physics.highpoint.edu/~mdewitt/phy1050/?page=week6
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Closed Timelike Curves

• CTC = world line that loops back on itself

• would make a closed loop in space and 
time!

• i.e., Groundhog Day

• mathematically allowed by general relativity

• just a loop, not arbitrary time travel
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Wormholes
• a ‘shortcut’ through curved space

• like a tunnel to China ...

• can play games with moving ends, etc ...

• but still can’t travel to time before you 
entered!

http://www.eclipse.net/~cmmiller/BH/

http://www.eclipse.net/~cmmiller/BH/bhqa2.html
http://www.eclipse.net/~cmmiller/BH/bhqa2.html
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So where do we stand?

• time travel to the future is a real thing

- but just slow your own time passage

• time travel to the past may be a real thing

- but only to point after starting ‘journey’

• still, nothing explicitly forbids time travel!

- take causality/paradoxes seriously 
though ...
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Other issues

• no known way to make CTCs

• wormholes require exotic matter ...

• locality/autonomy - how to avoid chaos?

(block time?)

• that one can’t go back to moment before 
initiating time travel helps!

• what about energy? 

(even information costs energy)


