
Chapter 12 
Torque

© 2015 Pearson Education, Inc.



Section Goals
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Section 12.1: Torque and angular momentum

You will learn to
• Explain the causes of rotational motion using torque 

(the rotational analog of force).
• Identify the factors that influence the ability of a force 

to rotate a rigid object. 
• Determine the net torque when multiple forces act on 

a rigid object, using the superposition principle.
• Identify and apply the conditions that cause an object 

to be in a state of rotational equilibrium. 
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• If you exert a force on the edge of stationary wheel or 
a cap of a jar tangential to the rim, it will start to 
rotate. 

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum
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Section 12.1: Torque and angular momentum

• To push a seesaw to lift a child 
seated on the opposite side as 
shown in the figure, it is best to 
push
1. as far as possible from the 

pivot, and 
2. in a direction that is 

perpendicular to the seesaw.
• Why are these the most effective 

ways to push the seesaw?
• We will try to answer this in the 

next few slides.
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• The ability of a force to rotate an 
object about an axis is called torque. 

• Experiments indicate that the rod in 
the figure is balanced if r1 F1 = r2 F2.

• This suggests that
torque = r⊥ F,

where r⊥ (referred to as lever arm) is 
the perpendicular distance from the 
location of force to the pivot. 

• We can see that applying the force as 
far as possible from the pivot point 
increases the torque. 

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum
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• A force is most effective at rotating the seesaw when 
it is oriented perpendicular to the seesaw.

• Reason: Only the component of the force 
perpendicular to the seesaw (F⊥ ) that causes the 
seesaw to rotate. 

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum
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(a) Draw a free-body 
diagram for the rod of the figure 
below. Let the inertia of the rod 
be negligible compared to m1 and 
m2. 
(b) Would the free-body diagram 
change if you slide object 2 to the 
left?
(c) Experiments show that when 
m1 = 2m2 the rod is balanced for 
r2 = 2r1. How is the ratio r1/r2
related the ratio m1/m2? 

© 2015 Pearson Education, Inc.

Checkpoint 12.1

12.1
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Checkpoint 12.1

a) four forces on rod:
• gravity (negligible)
• downward contact forces of the two objects
• upward force by pivot

b) rod is still subject to the same forces
• no change to free body diagram
• it will rotate, but free body diagram misses this!

c) r1F1 = r2F2

• r1/r2 = F2/F1 = m2g/m1g = m2/m1



(d) What would happen if 
you remove object 1?
(e) What would happen if you 
double the inertia of object 1?
(f) What would happen if you 
carefully place a penny on top of 
object 1? Let the inertia of the 
two objects be significantly larger 
than that of the penny.
(g) Is there a difference between 
what would happened in parts e
and f ?

© 2015 Pearson Education, Inc.

Checkpoint 12.1 (cont.)

12.1
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Checkpoint 12.1

• remove object 1 – that end shoots up, object 2 falls
• double object 1 – 2m1 goes down, object 2 pulled up
• penny on object 1 – no longer balanced, m1 falls
• speed of rotation is fast when doubling mass, slow 

adding just a penny



• Torque is the product of the magnitude of the force 
and its lever arm distance.

Two ways to determine torque:

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

torque = r⊥F = (r sin θ)Ftorque = rF⊥ = r(F sin θ) 
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• The mathematical expression for torque is 
torque = r(F sinθ)

• The effectiveness of a 
force to rotate an object
about an axis depends on
• the magnitude of the

applied force (F).
• the distance from the pivot 

to the point force is applied (r).
• the angle at which the force

is applied (θ).
© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

pivot
J

q

F
!

r!
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Torque has a sign.
• The sign of the torque depends 

on the choice of direction for 
increasing θ. 

• In the figure the torque caused 
by     is positive because it tends 
to increase θ (CCW)

• The torque caused by     is 
negative (CW)

• Therefore, the sum of the two 
torques is r1F1 – r2F2.

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum


F1


F2

For stationary objects, the sum of torques is zero.
Statics: forces and torques sum to zero.
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In the situation depicted in Figure 12.2a, you must 
continue to exert a force on the seesaw to keep the child off the 
ground. The force you exert causes a torque on the seesaw, and 
yet the seesaw’s rotational acceleration is zero. How can this be if 
torques cause objects to accelerate rotationally?

© 2015 Pearson Education, Inc.

Checkpoint 12.2

12.2
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Seesaw

© 2015 Pearson Education, Inc.

Checkpoint 12.2

• The seesaw remains at rest because the child causes a 
torque on the seesaw that is equal in magnitude to 
yours, but tends to rotate the seesaw in the opposite 
direction



You are trying to open a door that is stuck by pulling 
on the doorknob in a direction perpendicular to the 
door. If you instead tie a rope to the doorknob and 
then pull with the same force, is the torque you exert 
increased?

1. Yes
2. No

© 2015 Pearson Education, Inc.

Section 12.1
Question 1
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You are trying to open a door that is stuck by pulling 
on the doorknob in a direction perpendicular to the 
door. If you instead tie a rope to the doorknob and 
then pull with the same force, is the torque you exert 
increased?

1. Yes
2. No – perpendicular distance to pivot and force 

have not changed
The force you are applying is unchanged and the 
perpendicular distance between the line of action and 
the pivot point (the lever arm) is also unchanged.

© 2015 Pearson Education, Inc.

Section 12.1
Question 1
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You are using a wrench and trying to loosen a rusty 
nut. Which of the arrangements shown is most 
effective in loosening the nut? List in order of 
descending efficiency the following arrangements:

© 2015 Pearson Education, Inc.

Section 12.1
Question 2
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You are using a wrench and trying to loosen a rusty 
nut. Which of the arrangements shown is most 
effective in loosening the nut? List in order of 
descending efficiency the following arrangements:

© 2015 Pearson Education, Inc.

Section 12.1
Question 2

Slide 12-19

2>1=4>3



© 2015 Pearson Education, Inc.



Example 12.2 Torques on lever

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

Three forces are exerted on the 
lever of Figure 12.7. Forces and
are equal in magnitude, and the 
magnitude of  is half as great. 
Force     is horizontal, and     are 
vertical, and the lever makes an 
angle of 45o with the horizontal. 
Do these forces cause the lever to 
rotate about the pivot? If so, in 
which direction?


F1


F3


F2

F1

F2


F3
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

� GETTING STARTED I begin 
by arbitrarily choosing counter-
clockwise as the direction of 
increasing θ. With that choice of
θ,     and     cause positive torques 
about the pivot, while causes a 
negative torque. To answer the 
question, I need to determine the 
magnitude and sign of the sum of 
these three torques about the pivot.


F1


F3 

F2
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

� DEVISE PLAN The forces 
are not perpendicular to the long 
axis of the lever, and so I need to 
follow one of the two procedures 
shown in Figure 12.5 (in text) to 
determine the torques about the 
pivot. I arbitrarily choose to 
determine the lever arm 
distances. 

Slide 12-23



Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

� DEVISE PLAN To determine these 
distances relative to the pivot, I make a 
sketch showing the forces and the 
perpendicular distance from the pivot to 
the line of action of each force. 
I can then get the magnitude of each 
torque by multiplying each force 
magnitude by the corresponding lever 
arm distance. Knowing the sign and 
magnitude of each torque, I can 
determine the combined effect of the 
three torques.
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

� EXECUTE PLAN I know that 
F1 = 2F2. My sketch tells me that 
r1⊥ = (ℓ/3)sin 45o and r2⊥ = (2ℓ/3) 
cos 45o, and so r1⊥ =    r2⊥ because 
sin 45o = cos 45o. Therefore the 
torques caused by these two forces 
about the pivot are equal in 
magnitude:
r1⊥F1 = ( r2⊥) (2F2) = r2⊥F2.

1
2
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

� EXECUTE PLAN Because the two torques carry 
opposite signs, their sum is thus zero and their effects 
cancel. This means that the torque caused by 
determines whether or not the lever rotates and, if so, in 
which direction. Because this torque is nonzero and 
counterclockwise, the lever rotates in a counterclockwise 
direction.�

   

F3
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Example 12.2 Torques on lever (cont.)

© 2015 Pearson Education, Inc.

Section 12.1: Torque and angular momentum

� EVALUATE RESULT Looking at 
Figure 12.7, I see that the two larger 
forces (    and    ) cause 
counterclockwise torques about the 
pivot, and only the smaller force   
causes a clockwise torque. Thus it 
makes sense that the lever rotates in 
the counterclockwise direction.


F1


F3


F2
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(a) Without changing the 
magnitude of any of the forces in 
Example 12.2, how must you 
adjust the direction of to 
prevent the lever from rotating? 
(b) If, instead of adjusting the 
direction of    , you adjust the 
magnitude of , by what factor 
must you change it?

© 2015 Pearson Education, Inc.

Checkpoint 12.3

12.3


F3


F3
   

F2
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Checkpoint 12.3

• could align F3 along the axis of the rod – no torque

• was balanced before. now need F2 to overcome F3 (F1
acts in the wrong direction)

• noting F1=F3,    r2⊥=2r1⊥,    and    r3⊥=3r1⊥:
r1⊥F1 - 2r1⊥F2 + 3r1⊥F1 = 0
4r1⊥F1 - 2r1⊥F2 = 0

• requires F2=2F1, so have to increase F2 by 4 times



Section Goals

© 2015 Pearson Education, Inc.

Section 12.2: Free rotation

You will learn to
• Extend the concept of rotation to situations where the 

axis of rotation of an object is free to move in space.
• Understand how the center of mass determines the 

axis of rotation for unconstrained objects.
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• This figure shows the free rotation of 
a wrench thrown vertically upward 
with a clockwise spin.

• Notice that the center of mass of the 
wrench executes a nearly vertical 
trajectory as it rises.

• But notice that the motion of a point 
near the handle of the wrench is 
somewhat complicated; it is neither 
circular nor linear. 

© 2015 Pearson Education, Inc.

Section 12.2: Free rotation
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• The center of mass motion of the wrench is consistent 
with free fall. Notice how the spacing of the center of 
mass location decreases slightly as it rises.

• This is the same as one would expect for a point 
particle launched upward under the influence of 
gravity.

• But, notice that the motion of the dot on the wrench 
about the center of mass is that of uniform circular 
motion. 

• This is consistent with the wrench having no external 
rotational influences after it is launched.

© 2015 Pearson Education, Inc.

Section 12.2: Free rotation
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• The analysis of this situation leads to a powerful 
generalization:

Objects that are made to rotate without external 
constraints always rotate about the center of mass.

© 2015 Pearson Education, Inc.

Section 12.2: Free rotation
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As the wrench in Figure 12.9 moves 
upward, the upward translational motion of 
its center of mass slows down. Does the 
rotation about the center of mass also slow 
down? Which way does the wrench rotate 
when it falls back down after reaching its 
highest position?

Neglecting air resistance, rotation is steady. 
Translational and rotational motions are 
uncoupled – gravity doesn’t alter rotation. It 
keeps rotating the same way.

© 2015 Pearson Education, Inc.

Checkpoint 12.4

12.4
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Section Goal

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram

You will learn to
• Construct extended force diagrams that account for 

rotation of objects. 
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Procedure: Extended free-body diagram

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram

1. Begin by making a standard free-body diagram 
for the object of interest (the system) to determine 
what forces are exerted on it. Determine the 
direction of the acceleration of the center of mass of 
the object, and draw an arrow to represent this 
acceleration.

2. Draw a cross section of the object in the plane of 
rotation, or, if the object is stationary, in the plane 
in which the forces of interest lie.
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Procedure: Extended free-body diagram (cont.)

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram

3. Choose a reference point. If the object is rotating 
about a hinge, pivot, or axle, choose that point. If the 
object is rotating freely, choose the center of mass. 
If the object is stationary, you can choose any 
reference point.
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Procedure: Extended free-body diagram (cont.)

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram

3(cont.). Because forces exerted at the reference point 
cause no torque, it is most convenient to 
choose the point where the largest number 
of forces are exerted or where an unknown 
force is exerted. Mark the location of your 
reference point and choose a positive direction 
of rotation. Indicate the reference point in your 
diagram by the symbol ¤.
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Procedure: Extended free-body diagram (cont.)

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram

4. Draw vectors to represent the forces that are exerted on the 
object and that lie in the plane of the drawing. Place the tail 
of each force vector at the point where the force is exerted 
on the object. Place the tail of the gravitational force exerted 
by Earth on the object at the object’s center of mass. Label 
each force. 

5. Indicate the object’s rotational acceleration in the diagram 
(for example, if the object accelerates in the positive θ
direction, write αθ > 0 near the rotation axis). If the rotational 
acceleration is zero, write αθ = 0.
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Exercise 12.3 Holding a ball

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram

You hold a ball in the palm of 
your hand, as shown in Figure 
12.10. The bones in your forearm 
act like a horizontal lever pivoted 
at the elbow. The bones are held 
up by the biceps muscle, which 
makes an angle of about 15o with 
the vertical. Draw an extended 
free-body diagram for your 
forearm.
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Exercise 12.3 Holding a ball (cont.)

© 2015 Pearson Education, Inc.

Section 12.3: Extended free-body diagram
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how to get direction of Fhf? Overall vector sum is zero



(a) If the biceps muscle in Figure 12.10 were attached 
farther out toward the wrist, would the torque generated by the 
muscle about the pivot get greater, get smaller, or stay the same? 
(b) As the hand is raised above the level of the elbow, so that the 
forearm makes an angle of 15o with the horizontal, does the arm’s 
capacity to lift objects increase, decrease, or stay the same?

© 2015 Pearson Education, Inc.

Checkpoint 12.5

12.5
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Checkpoint 12.5

• Bicep attached farther out? Lever arm distance 
increases, so torque generated increases

• As the arm is raised, Fmf becomes more perpendicular 
to the forearm, so torque increases. This increases 
lifting ability.



A 1-kg rock is suspended by a massless string from 
one end of a 1-m measuring stick. What is the mass of 
the measuring stick if it is balanced by a support force 
at the 0.25-m mark? Assume the stick has uniform 
density.
1. 0.25 kg
2. 0.5 kg
3. 1 kg
4. 2 kg
5. 4 kg
6. Impossible to determine

© 2015 Pearson Education, Inc.

Section 12.3
Question 3
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1 kg – two bits on the end (half the mass) have to 
balance the rock at a distance of 0.50 m. 

(1kg)(0.25m) = (m/2)(0.5m)

© 2015 Pearson Education, Inc.

Section 12.3
Question 3

Slide 12-45

Because the stick is a uniform, symmetric body, we can 
consider all its weight as being concentrated at the center of 
mass at the 0.5-m mark. Therefore the point of support lies 
midway between the two masses, and the system is balanced 
only if the total mass on the right is also 1 kg.



Section Goals

© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation

You will learn to
• Extend the concept of the direction of rotation from 

rotations in a plane to three-dimensions.
• Visualize how the vector nature of rotation is 

determined when the direction of rotation and the 
direction of the axis of rotation in space are specified.

• Demonstrate how the rotational kinematic quantities, 
Δθ, ω, and α can be described using rotation vectors.
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• The case of rotations that lie in a plane is shown below.

• Notice that only an algebraic sign is needed to specify the 
direction of rotation about the axis of rotation

• The sign conventions “counterclockwise quantities are 
positive” and “clockwise quantities are negative” are used.

© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation
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• The vector description can be determined by using the
right-hand rule:

• Notice that if the fingers of the right hand are curled around 
the rotation, the thumb points in the direction of the vector 
representing the rotation.

© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation
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• The right-hand rule can be used to determine the 
vector for the rotations of two spinning disks with 
their edges touching.

© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation
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• The right-hand rule can be used to determine the vector 
directions for the rotations of two spinning disks with their edges 
in contact.

• The rotation vector for disk A points in the z-direction and has 
vector components (0, 0, A), where A is a positive number.

• The rotation vector for disk B points in the negative y-direction 
and has components (0, –B, 0) where B is a positive number.

© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation
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• The right-hand rule can be used in “reverse” to 
determine the corresponding rotation for a rotational 
vector.

© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation
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• Displacement vectors for motion commute in flat space. That 
means that the sum of several displacements is independent of 
the order added.

• Rotational displacements do not commute, however.

• The orientation is different depending on the order of rotation!      
© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation
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• Rotational displacements for small displacements do commute, 
however.

• See how the orientation of the ball is same for the two different 
orders of rotation.

• Implies the instantaneous rotational velocity, ω = dθ/dt, does 
commute and can be associated with a vector by the right-hand rule.

© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation
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• The vector nature of rotational velocity is given by an 
axial vector defining the direction of rotation from 
the right-hand rule and a magnitude defining the 
speed of rotation. Axial vectors have ‘handedness.’

© 2015 Pearson Education, Inc.

Section 12.4: The vector nature of rotation
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Suppose the rotation of top A in Figure 12.23 slows down 
without a change in the direction of its axis of rotation. (a) In 
which direction does the vector       point? (b) Can the top’s 
rotational acceleration be represented by a vector? If so, in which 
direction does this vector point?

© 2015 Pearson Education, Inc.

Checkpoint 12.7

12.7

Δ

ω
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Checkpoint 12.7

• Since the rotation slows down, final angular velocity 
is smaller. Since       points from initial to final, it is 
opposite the direction of the angular velocity. 

• Yes, the rotational acceleration is the change in 
rotational velocity per unit time, so it points in the 
direction of 

Δ

ω

Δ

ω



Consider the uniformly rotating object shown below. 
If the object’s angular velocity is a vector (in other 
words, it points in a certain direction in space) is there 
a particular direction we should associate with the 
angular velocity?
1. Yes, �x
2. Yes, �y
3. Yes, �z
4. Yes, some other direction
5. No, the choice is really arbitrary.

© 2015 Pearson Education, Inc.

Section 12.4
Question 4

Slide 12-57



Consider the uniformly rotating object shown below. 
If the object’s angular velocity is a vector (in other 
words, it points in a certain direction in space) is there 
a particular direction we should associate with the 
angular velocity?
Yes, �z

Only the z direction is unique; the x and y directions 
represent only the instantaneous direction in which the 
object is moving. The z direction has the same 
relationship to the instantaneous velocity at all times 
during the motion.

© 2015 Pearson Education, Inc.

Section 12.4
Question 4

Slide 12-58



Consider the situation shown at left below. A puck of mass 
m, moving at speed v hits an identical puck which is 
fastened to a pole using a string of length r. After the 
collision, the puck attached to the string revolves around 
the pole. Suppose we now lengthen the string by a factor 
2, as shown on the right, and repeat the experiment. 
Compared to the angular speed in the first situation, the 
new angular speed is
1. Twice as high.
2. The same.
3. Half as much.
4. None of the above

© 2015 Pearson Education, Inc.

Section 12.4
Question 5
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Consider the situation shown at left below. A puck of mass 
m, moving at speed v hits an identical puck which is 
fastened to a pole using a string of length r. After the 
collision, the puck attached to the string revolves around 
the pole. Suppose we now lengthen the string by a factor 
2, as shown on the right, and repeat the experiment. 
Compared to the angular speed in the first situation, the 
new angular speed is

Half as much – conservation of L, mvr = Iω = mr2ω
I is increased by doubling the radius as r2, but initial L 
increases only as r, so ω goes down

© 2015 Pearson Education, Inc.

Section 12.4
Question 5
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A rope supports one end of a beam as shown in Figure 
12.24. Draw the lever arm distance for the torque 
caused by the rope about the pivot.

© 2015 Pearson Education, Inc.

Chapter 12: Self-Quiz #1
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Answer
The lever arm distance r⊥ is the perpendicular distance 
between the pivot and the line of action of the force 
exerted by the rope on the beam, as shown in 
Figure 12.27.

© 2015 Pearson Education, Inc.

Chapter 12: Self-Quiz #1
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Draw a free-body diagram and an extended free-body 
diagram for (a) a door hanging on two hinges and (b) a 
bridge supported from each end, with a car positioned at 
one-quarter of the bridge’s length from one support.

© 2015 Pearson Education, Inc.

Chapter 12: Self-Quiz #2
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Answer
See Figure 12.28. (a) The door interacts with three objects: Earth, the top 
hinge, and the bottom hinge. Without the top hinge, the force of gravity would 
tend to rotate the door about an axis perpendicular to the door through the 
bottom hinge. 

The force exerted by the top hinge must balance the clockwise torque caused 
by the force of gravity about the axis through the bottom hinge. The horizontal 
components of the forces exerted by the hinges must cancel each other.

© 2015 Pearson Education, Inc.

Chapter 12: Self-Quiz #2

Slide 12-64



Answer (cont.)
See Figure 12.28. (b) The bridge interacts with four objects: Earth, the right 
support, the left support, and the car. The upward forces from the supports 
must balance the downward gravitational forces of the car and the bridge. 

Because these forces must also counteract the counterclockwise torque caused 
by the car, the force exerted by the support closer to the car must be greater 
than the force exerted by the other support.

© 2015 Pearson Education, Inc.

Chapter 12: Self-Quiz #2
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Which diagram in Figure 12.25—1, 2, or 3—shows the 
alarm clock on the left after it has been rotated in the 
directions indicated by (a) 90o about the x axis and then 
90o about the y axis and (b) 90o about the y axis and 
then 90o about the x axis? Does the order of the rotation 
change your answer? 
(a) 3; (b) 2. The order of rotation makes a difference.

© 2015 Pearson Education, Inc.

Chapter 12: Self-Quiz #3
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Give the direction of the rotational velocity vector 
associated with each spinning object shown in the figure 
below.

© 2015 Pearson Education, Inc.

Chapter 12: Self-Quiz #4
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Answer
Wrapping the fingers of your right hand in the direction 
of spin gives rotational velocity vectors that point (a) to 
the right, (b) up, (c) out of the page, and (d) into the 
page.

© 2015 Pearson Education, Inc.

Chapter 12: Self-Quiz #4
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Quantitative Tools

© 2015 Pearson Education, Inc.

Chapter 12 Torque
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Section Goals
You will learn to
• Apply Newton’s Second Law for rotation to the 

rotational motion of extended objects.
• Establish the conditions under which rotational 

angular momentum is conserved.

© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum
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• Consider the situation shown in the figure below: A 
force     is exerted on a particle constrained to move 
in a circle. 

• The magnitude of the torque
caused by     is:

τ ≡ rF sin θ = r⊥F = rF⊥
• SI units of torque are N · m.

© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum


F


F
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• The tangential component of force F⊥ = |Ft| causes 
the particle to have a tangential acceleration (at) given 
by

Ft = mat

• Combining equations 12.1 and 12.2 and using the 
relation at = rαt we obtain

τθ = r(mat) = rm(rαθ) = mr2αθ = Iαθ

where I = mr2 is the rotational inertia of the particle

© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum
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© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum

• Now let us consider the case 
of an extended object.

• Imagine breaking down the 
object into small particles of 
inertia δmn, as shown in the 
figure. 

• Let each particle be subject 
to a torque τnθ

• Using Eq. 12.4 we can write,

τ nϑ = δmnrn
2αnϑ
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• Then, the sum of the torques on
all particles can be written as

• The sum on the left side of Eq. 12.7 contains torques 
due to external and internal forces. 

• But, the torques due to internal forces cancel out, 
giving us
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  τ extϑ∑ = Iαϑ
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• Now lets look at the angular momentum of the 
extended object.

• Recalling from Chapter 11 that angular momentum is 
given by Lθ = Iωθ and the relation for 
rigid objects we get

dLθ/dt = I(dωθ /dt) = Iα = τ

(like F=dp/dt and F=ma)

© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum

  τ extϑ∑ = Iαϑ ,
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• If the sum of the torques caused by the external forces 
on a extended object is zero (isolated system), then 

and the object is in rotational equilibrium.

• An object in both translational and rotational 
equilibrium is said to be in mechanical equilibrium, 
and satisfies the conditions
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momentum

  
Στ extϑ  = 

dLϑ

dt
 = 0 ⇒ ΔLϑ  = 0

   Στ extϑ  = 0 and Σ

Fext  = 


0 ⇔  mechanical equilibrium
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• For a system that is not in rotational equilibrium, we 
have the angular momentum law: 

where Jθ represents the transfer of angular 
momentum from the environment. 

• Jθ is called the rotational impulse given by
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   ΔLϑ = Jϑ  

  Jϑ  = (Στ extϑ )Δt  (constant torques)

Slide 12-77



• The figure below illustrates how conservation of 
angular momentum gives rise to the angular 
momentum law and how to treat isolated and 
nonisolated systems. 
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A figure skater stands on one spot on the ice (assumed 
frictionless) and spins around with her arms extended. 
When she pulls in her arms, she reduces her rotational 
inertia and her angular speed increases so that her 
angular momentum is conserved. Compared to her 
initial rotational kinetic energy, her rotational kinetic 
energy after she has pulled in her arms must be
1. The same.
2. Larger because she’s rotating faster.
3. Smaller because her rotational inertia is smaller.
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A figure skater stands on one spot on the ice (assumed 
frictionless) and spins around with her arms extended. 
When she pulls in her arms, she reduces her rotational 
inertia and her angular speed increases so that her angular 
momentum is conserved. Compared to her initial 
rotational kinetic energy, her rotational kinetic energy 
after she has pulled in her arms must be
Larger because she’s rotating faster. (work done by 
muscles …)
L = Iω – one increases, other decreases by same amount
K = ½Iω2 – increase in ω wins
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Example 12.5 Flywheel 
A motor exerts a constant force of 120 N tangential to 
the rim of a 20-kg cylindrical flywheel of radius 0.50 m. 
The flywheel is free to rotate about an axis through its 
center and runs perpendicular to its face. If the flywheel 
is initially at rest and the motor is turned on for 2.0 s, 
how much work does the motor do on the flywheel?
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Example 12.5 Flywheel (cont.)
� GETTING STARTED I begin by 
making a sketch of the situation to 
organize the information
(Figure 12.33). The force exerted
by the motor causes the flywheel
to start spinning, which means
the wheel’s rotational kinetic
energy changes. This is the only energy 
change in the system, and I know from the 
energy law (Eq. 9.1) that ∆E = W.
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Example 12.5 Flywheel (cont.)
� GETTING STARTED Therefore ∆Krot = W, and so 
to calculate the work done by the motor, I need to 
determine this change in rotational kinetic energy. 
Because the flywheel is at rest initially, I know that 
∆Krot = Krot,f.
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Example 12.5 Flywheel (cont.)
� DEVISE PLAN To obtain Krot,f, I can use Eq. 11.31, 
Krot =    Iω2. The rotational inertia I of the flywheel 
(which is a solid cylinder) is   mR2 (see Table 11.3). 

Because I’m interested in Krot,f, I need the final value for 
ω, the wheel’s rotational speed. How can I connect ωf to 
anything I know in this problem?
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Example 12.5 Flywheel (cont.)
� DEVISE PLAN The relationship between ω and 
angular momentum is                (Eq. 11.34), and I 
know from Eq. 12.16 that ∆Lθ = τθ ∆t. I know ∆t, but 
do I know anything about τ in terms of the information 
given—a force, an inertia, and a wheel radius? Yes, 
Eq. 12.1: τ = rF⊥. 

Thus my plan is to express ωf in terms of R and F and 
then use that expression for ωf in 
Krot =  ½ Iω2 to calculate Krot,f = W.
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 Lϑ ≡ Iωϑ
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Example 12.5 Flywheel (cont.)
� EXECUTE PLAN The magnitude of the torque caused by the 
motor is τ = RF, where R is the radius of the wheel and F is the 
magnitude of the force exerted by the motor. Equation 12.16 then 
gives

Because the initial angular momentum is zero, I know that 
∆L = Iωf = +Iωf and so I have

∆L = RF∆t = Iωf
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  ΔLϑ = ∑τ extϑ( )Δt = +RFΔt

  
ω f =

RFΔt
I
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Example 12.5 Flywheel (cont.)
� EXECUTE PLAN The final rotational kinetic energy is thus

and the work done on the flywheel is

© 2015 Pearson Education, Inc.

Section 12.5: Conservation of angular 
momentum

  
Krot,f =

1
2

Iω f
2 = 1

2
I RFΔt

I
⎛
⎝⎜

⎞
⎠⎟

2

  
=

RFΔt( )2

2I
=

RFΔt( )2

mR2 =
FΔt( )2

m

  
W = Krot,f =

[(120 N) (2.0 s)]2

20 kg
= 2880 J = 2.9 kJ
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Example 12.5 Flywheel (cont.)
� EVALUATE RESULT Delivering 2.9 kJ in 2.0 s corresponds 
to a power of (2.9 kJ)/(2.0 s) = 1.4 kW, which is not an 
unreasonable amount for a large motor.
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Example 12.6 Spinning up a compact disc 
When you load a compact disc into a 
drive, a spinning conical shaft rises up 
into the opening in the center of the 
disc, and the disc begins to spin 
(Figure 12.34). Suppose the disc’s 
rotational inertia is Id, that of the shaft 
is Is, and the shaft’s initial rotational 
speed is ωi. Does the rotational kinetic 
energy of the disc-shaft system
remain constant in this process? 
Assume for simplicity that no external 
forces cause torques on the shaft.
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Example 12.6 Spinning up a compact disc 
(cont.)
� GETTING STARTED I am given rotational inertias for a disc 
and a shaft, plus the initial rotational speed of the shaft, and my 
task is to determine whether or not the system’s rotational kinetic 
energy changes when these two units interact: The disc 
is initially at rest, but as the shaft comes in contact with it, the 
two exert on each other forces that cause torques.
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  ΔKrot = 0.?
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Example 12.6 Spinning up a compact disc 
(cont.)
� GETTING STARTED The shaft speeds up the rotation of the 
disc, and the disc slows down the rotation of the shaft. The disc 
has no rotational velocity before the shaft touches it, and so 
initially all the system’s rotational kinetic energy is in the shaft. 

After they reach a common rotational speed ωf, both have 
rotational kinetic energy. I need to calculate the initial and final 
rotational kinetic energies of the shaft-disc system to answer the 
question.
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Example 12.6 Spinning up a compact disc 
(cont.)
� DEVISE PLAN The rotational kinetic energy of a rotating 
object is given by Eq. 11.31,                . I know the initial 
rotational speed of the shaft and its rotational inertia, so I can use 
this equation to calculate the initial rotational kinetic energy of 
the shaft-disc system. 

I do not know the final rotational speed of the system, but I do 
know that because there are no external torques on the system, 
Eq. 12.13 tells me that the angular momentum must remain 
constant: ∆Lθ = 0.
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  K = 1
2 Iω 2
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Example 12.6 Spinning up a compact disc 
(cont.)
� DEVISE PLAN Expressing ∆Lθ as the difference between the 
final and initial values gives me an expression containing ωf and 
ωi, which means I can probably get an expression for ωf /ωi that I 
can then use to compare the ratio Krot,f /Krot,i and thereby 
determine whether or not ∆Krot = 0. 

Because the problem is stated in symbols rather than numerical 
values, my comparison will be between two algebraic 
expressions.
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Example 12.6 Spinning up a compact disc 
(cont.)
� EXECUTE PLAN Because the torques that the disc and shaft 
cause on each other are internal and because there are no external 
torques, I have for the system’s angular momentum

∆Lθ = (Is + Id)ωθ,f – Isωθ,i = 0  (1)
If I let the initial direction of rotation of the shaft be positive, 
ωθ,I = +ωi and so ωθ,f is also positive. Rearranging terms in Eq. 1, 
I find that the ratio of the final and initial rotational speeds is
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ω f

ω i

=
Is

Is + Id
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Example 12.6 Spinning up a compact disc 
(cont.)
� EXECUTE PLAN The system’s initial rotational kinetic 
energy is                 , its final rotational kinetic energy is

, and the ratio of the two is

so                                The rotational kinetic energy of the system 
is not constant. It cost energy to spin up the CD.�
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  Ki =
1
2 Isω i

2

  Kf =
1
2 Is + Id( )ω f

2

  

Kf

Ki

=
1
2 ( Is + Id )

1
2 Is

ω f
2

ω i
2 =

Is

Is + Id

<1

  Kf < Ki ,  or ΔK ≠ 0.
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Example 12.6 Spinning up a compact disc 
(cont.)
� EVALUATE RESULT The spinning up of the disc is like an 
inelastic “rotational collision”: The disc initially at rest comes in 
contact with the spinning shaft, and the two reach a common 
rotational speed. 

While the disc is spinning up, some of the system’s initial 
rotational kinetic energy is converted to thermal energy because 
of friction between disc and shaft, and so it makes sense that the 
system’s rotational kinetic energy decreases.
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Checkpoint 12.9

Consider the situation in Example 12.6. (a) Is the vector 
sum of the forces exerted by the shaft on the compact disc 
nonzero while the disc is spinning up? (b) Is the disc isolated?

12.9
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• No – a nonzero sum of forces would cause the center 
of the disc to (linearly) accelerate. We know it stays 
put.

• No – the disc is not isolated. Even though the vector 
sum of forces is zero, the individual forces give a 
nonzero torque. This causes rotational acceleration 
and an increase of its rotational kinetic energy.
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Section Goals
You will learn to
• Use the concepts of simultaneous translational motion 

and rotational motion of an extended object to predict 
the kinematics and dynamics for rolling motion.

• Interpret that rolling motion is an intermediate 
situation between the cases of fixed and free rotations.

• Explain how in rolling motion an object revolves 
about its geometric center.
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• This figure shows the rolling motion of an object that 
moves without slipping. 

• The relationship between the displacement of the 
center of mass, ∆xcm, and the rotational displacement 
∆θ is given by

∆xcm = R∆θ
© 2015 Pearson Education, Inc.
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• The corresponding relationship between the velocity 
of the center-of-mass, νcm x, and the rotational 
velocity, ωθ, is given by

υcm x = Rωθ (rolling motion without slipping)

• This condition describes the kinematic constraint for 
an object rolling without slipping.
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• A point of the rim of a wheel 
that is in contact with the 
surface when rolling without 
slipping has zero instantaneous 
velocity. Static friction!

• See how a point on the rim of 
the wheel moves in a direction 
perpendicular to the surface 
before and after reaching the 
bottom.
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• Now let’s consider the dynamics of rolling motion. 
Consider an object rolling down a ramp without 
slipping.
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• Rolling rather than sliding occurs in this case because 
the force of static friction exerts a torque about the 
center of the object.

• Without friction, no rolling – only sliding
• The vector sum of the forces and the center-of-mass 

acceleration are related by

© 2015 Pearson Education, Inc.

Section 12.6: Rolling motion

∑Fx = FEo x
G − Fro

s = mg  sin  θ  −  Fro
s = macm x
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• The net torque about the axis is given by

where I is the rotational inertia and α is the rotational 
acceleration.

• Solving these equations simultaneously yields (noting α=a/R)
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  ∑τ extϑ = +Fro
s R = Iαϑ

  

acm x = + g  sinθ

1+ I
mR2

= + g  sinθ
1+ c

  
Fro

s = I
R2 acm x =

cmR2

R2

g  sinθ
1+ c

= mg  sinθ
c−1 +1
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• Notice that the static friction plays a dual role in this 
analysis:
1. It decreases the center-of-mass speed and 

acceleration of the rolling object, and
2. It also causes the torque that gives the rotational 

acceleration.
• Smaller I means larger acceleration

• Smaller I reaches the bottom of the ramp first
• Sliding without friction is even faster

• Energy paid to rotation …
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A wheel rolls without slipping along a horizontal 
surface. The center of the wheel has a translational 
speed v. The lowermost point on the wheel has a 
forward velocity of magnitude
1. 2v.
2. v.
3. Zero.
4. We need more information.
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Question 7
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A wheel rolls without slipping along a horizontal 
surface. The center of the wheel has a translational 
speed v. The lowermost point on the wheel has a 
forward velocity of magnitude
1. 2v.
2. v.
3. Zero – at that instant, it is in contact with the road 

and velocity is zero relative to the road
4. We need more information.

© 2015 Pearson Education, Inc.

Section 12.6
Question 7

Slide 12-108



Section Goal
You will learn to
• Use the concept of total mechanical energy to 

compute the total kinetic energy of an object that is in 
both translational and rotational motion.
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• Torques causes objects to accelerate rotationally and thus 
cause a change in their rotational kinetic energy.

• Consider the object in the figure. A force    is exerted at point 
P on the object. Using Eq. 12.10 we can write
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F

  
∑τ extϑ = Iαϑ = I

dωϑ

dt
= I

dωϑ

dϑ
dϑ
dt

= I
dωϑ

dϑ
ωϑ

  ∑τ extϑ( )dϑ = Iωϑ  dωϑ
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• Integrating the left- and right-hand sides of Eq. 12.28, 
we will get an equation for the change in rotational 
kinetic energy:

• Non-constant torque, you have to integrate τ dθ
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  ΔKrot = (Στ extϑ )Δϑ  (constant torques, rigid object)
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• Now, if the object is in both translational and 
rotational motion, then its kinetic energy is given by

• And the change in kinetic energy is given by
∆K = ∆Kcm + ∆Krot
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K = Kcm + Krot = 1
2mv

2
cm +

1
2 Iω

2
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Two cylinders of the same size and mass roll down an 
incline. Cylinder A has most of its weight 
concentrated at the rim, while cylinder B has most of 
its weight concentrated at the center. Which reaches 
the bottom of the incline first?
1. A
2. B
3. Both reach the bottom at the same time.
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Two cylinders of the same size and mass roll down an 
incline. Cylinder A has most of its weight 
concentrated at the rim, while cylinder B has most of 
its weight concentrated at the center. Which reaches 
the bottom of the incline first?
1. A
2. B – more mass at center = lower I = larger a
3. Both reach the bottom at the same time.
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A solid disk and a ring roll down an incline. The ring 
is slower than the disk if
1. mring= mdisk, where m is the inertial mass.
2. rring = rdisk, where r is the radius.
3. mring = mdisk and rring = rdisk.
4. The ring is always slower regardless of the relative 

values of m and r.
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A solid disk and a ring roll down an incline. The ring 
is slower than the disk if
1. mring= mdisk, where m is the inertial mass.
2. rring = rdisk, where r is the radius.
3. mring = mdisk and rring = rdisk.
4. The ring is always slower regardless of the relative 

values of m and r. 

Acceleration depends on c = I/mr2, which is 
independent of m and r.
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Problems

5. A uniform disk with mass M= 2.5 kg and radius R= 20 cm is mounted on a fixed horizontal

axle, as shown below. A block of mass m = 1.2 kg hangs from a massless cord that is wrapped

around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of

the disk, and the tension in the cord. Note: the moment of inertia of a disk about its center of

mass is I= 1
2MR

2
.

m

M

Problems for 11 June (due 12 June)

6. In the figure below, a small block of mass m slides down a frictionless surface through height h

and then sticks to a uniform rod of mass M and length L. The rod pivots about point O through

angle ✓ before momentarily stopping. Find ✓.

A

BC

m

M

hθl cos θ l

7. In the figure below, block 1 has mass m1, block 2 has mass m2 (with m2>m1), and the pulley

(a solid disc), which is mounted on a horizontal axle with negligible friction, has radius R and mass

M. When released from rest, block 2 falls a distance d in t seconds without the cord slipping on

the pulley. (a) What are the magnitude of the accelerations of the blocks? (b) What is T1? (c)

What is T2? (d) What is the pulley’s angular acceleration? The moment of inertia of a solid disc

is I= 1
2MR

2.



• How to approach?
• Hanging mass is easy
• Pulley? Use torque to get α, relate that to a
• Force on pulley is tangential to rim, equal to tension T
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Solution: In order to get acceleration and angular acceleration, we’ll need to use force and torque,

respectively. Start with the pulley. The tension T in the rope pulls on the edge of the disk a

distance R from the center of rotation at an angle of ✓RT = 90�, which causes a torque ⌧. This

torque must equal the disk’s moment of inertia times the angular acceleration.

⌧ = RT sin ✓RT = RT = I↵ =
1

2
MR

2
↵ (1)

↵ =
2T

MR
(2)

We can get the tension by considering the force balance for the hanging mass. We have the tension

in the tope pulling up, the weight of the mass pulling down, and an overall acceleration downward.

Thus

X
F = T -mg = -ma (3)

Noting that a=R↵, this gives T =mg-MR↵. Now we’ve got two equations for ↵, which we can

combine.

↵ =
2T

MR
=

2

MR
(mg-mR↵) =

2mg

MR
-

2m

M
↵ (4)

2mg

MR
= ↵

✓
1+

2m

M

◆
(5)

↵ =
2mg

R (M+ 2m)
⇡ -24 rad/s2 (6)

Given ↵, we can find a and T .

a = R↵ =
2mg

M+ 2m
⇡ -4.8m/s2 (7)

T = mg-MR↵ = mg-
2m2

g

M+ 2m
= mg

✓
1-

2m

M+ 2m

◆
= g

✓
mM

M+ 2m

◆
⇡ 6.0N (8)

5. A uniform disk with mass M= 2.5 kg and radius R= 20 cm is mounted on a fixed horizontal

axle, as shown below. A block of mass m = 1.2 kg hangs from a massless cord that is wrapped

around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of

the disk, and the tension in the cord. Note: the moment of inertia of a disk about its center of

mass is I= 1
2MR

2
.

m

M

Problems for 11 June (due 12 June)

6. In the figure below, a small block of mass m slides down a frictionless surface through height h

and then sticks to a uniform rod of mass M and length L. The rod pivots about point O through

angle ✓ before momentarily stopping. Find ✓.

A

BC

m

M

hθl cos θ l

7. In the figure below, block 1 has mass m1, block 2 has mass m2 (with m2>m1), and the pulley

(a solid disc), which is mounted on a horizontal axle with negligible friction, has radius R and mass

M. When released from rest, block 2 falls a distance d in t seconds without the cord slipping on

the pulley. (a) What are the magnitude of the accelerations of the blocks? (b) What is T1? (c)

What is T2? (d) What is the pulley’s angular acceleration? The moment of inertia of a solid disc

is I= 1
2MR

2.



• Still don’t know tension: use hanging mass

• No slipping? a = Rα so T = mg – mRα
• Now 2 equations and 2 unknowns

• Given this, a and T can be found …
© 2015 Pearson Education, Inc.

Problems

m

M

Solution: In order to get acceleration and angular acceleration, we’ll need to use force and torque,

respectively. Start with the pulley. The tension T in the rope pulls on the edge of the disk a

distance R from the center of rotation at an angle of ✓RT = 90�, which causes a torque ⌧. This

torque must equal the disk’s moment of inertia times the angular acceleration.

⌧ = RT sin ✓RT = RT = I↵ =
1

2
MR

2
↵ (1)

↵ =
2T

MR
(2)

We can get the tension by considering the force balance for the hanging mass. We have the tension

in the tope pulling up, the weight of the mass pulling down, and an overall acceleration downward.

Thus

X
F = T -mg = -ma (3)

Noting that a=R↵, this gives T =mg-MR↵. Now we’ve got two equations for ↵, which we can

combine.

↵ =
2T

MR
=

2

MR
(mg-mR↵) =

2mg

MR
-

2m

M
↵ (4)

2mg

MR
= ↵

✓
1+

2m

M

◆
(5)

↵ =
2mg

R (M+ 2m)
⇡ -24 rad/s2 (6)

Given ↵, we can find a and T .

a = R↵ =
2mg

M+ 2m
⇡ -4.8m/s2 (7)

T = mg-MR↵ = mg-
2m2

g

M+ 2m
= mg

✓
1-

2m

M+ 2m

◆
= g

✓
mM

M+ 2m

◆
⇡ 6.0N (8)
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Solution: In order to get acceleration and angular acceleration, we’ll need to use force and torque,

respectively. Start with the pulley. The tension T in the rope pulls on the edge of the disk a

distance R from the center of rotation at an angle of ✓RT = 90�, which causes a torque ⌧. This

torque must equal the disk’s moment of inertia times the angular acceleration.

⌧ = RT sin ✓RT = RT = I↵ =
1

2
MR

2
↵ (1)

↵ =
2T

MR
(2)

We can get the tension by considering the force balance for the hanging mass. We have the tension

in the tope pulling up, the weight of the mass pulling down, and an overall acceleration downward.

Thus

X
F = T -mg = -ma (3)

Noting that a=R↵, this gives T =mg-MR↵. Now we’ve got two equations for ↵, which we can

combine.

↵ =
2T

MR
=

2

MR
(mg-mR↵) =

2mg

MR
-

2m
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↵ (4)

2mg

MR
= ↵

✓
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◆
(5)

↵ =
2mg

R (M+ 2m)
⇡ -24 rad/s2 (6)

Given ↵, we can find a and T .

a = R↵ =
2mg

M+ 2m
⇡ -4.8m/s2 (7)

T = mg-MR↵ = mg-
2m2

g

M+ 2m
= mg

✓
1-

2m

M+ 2m

◆
= g

✓
mM

M+ 2m

◆
⇡ 6.0N (8)



• Note T < mg, for two reasons:
• One, there is acceleration, so this must be true
• Two, it costs something to spin up the pulley
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Solution: In order to get acceleration and angular acceleration, we’ll need to use force and torque,

respectively. Start with the pulley. The tension T in the rope pulls on the edge of the disk a

distance R from the center of rotation at an angle of ✓RT = 90�, which causes a torque ⌧. This

torque must equal the disk’s moment of inertia times the angular acceleration.

⌧ = RT sin ✓RT = RT = I↵ =
1

2
MR

2
↵ (1)

↵ =
2T

MR
(2)

We can get the tension by considering the force balance for the hanging mass. We have the tension

in the tope pulling up, the weight of the mass pulling down, and an overall acceleration downward.

Thus

X
F = T -mg = -ma (3)

Noting that a=R↵, this gives T =mg-MR↵. Now we’ve got two equations for ↵, which we can

combine.

↵ =
2T

MR
=

2

MR
(mg-mR↵) =

2mg

MR
-

2m

M
↵ (4)

2mg

MR
= ↵

✓
1+

2m

M

◆
(5)

↵ =
2mg

R (M+ 2m)
⇡ -24 rad/s2 (6)

Given ↵, we can find a and T .

a = R↵ =
2mg

M+ 2m
⇡ -4.8m/s2 (7)

T = mg-MR↵ = mg-
2m2

g

M+ 2m
= mg

✓
1-

2m

M+ 2m

◆
= g

✓
mM

M+ 2m

◆
⇡ 6.0N (8)
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8. A flywheel rotating freely on a shaft is suddenly coupled by means of a drive belt to a second

flywheel sitting on a parallel shaft (see figure below). The initial angular velocity of the first

flywheel is !, that of the second is zero. The flywheels are uniform discs of masses Ma and Mc

with radii Ra and Rc respectively. The moment of inertia of a solid disc is I= 1
2MR

2. The drive belt

is massless and the shafts are frictionless. (a) Calculate the final angular velocity of each flywheel.

(b) Calculate the kinetic energy lost during the coupling process. Hint: if the belt does not slip,

the linear speeds of the two rims must be equal.

9. A solid sphere, a solid cylinder, and a thin-walled pipe, all of mass m, roll smoothly along

identical loop-the-loop tracks when released from rest along the straight section (see figure below).

The circular loop has radius R, and the sphere, cylinder, and pipe have radius r⌧R (i.e., the size

of the objects may be neglected when compared to the other distances involved). If h=2.8R, which

of the objects will make it to the top of the loop? Justify your answer with an explicit calculation.

The moments of inertia for the objects are listed below.

I =

8
>>><

>>>:

2
5mr

2 sphere

1
2mr

2 cylinder

mr
2 pipe

(1)

Hint: consider a single object with I=kmr
2
to solve the general problem, and evaluate these three

special cases only at the end.

h R

m

10. The rotational inertia (moment of inertia) of a collapsing spinning star drops to 1
3 its initial

value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?

8. A flywheel rotating freely on a shaft is suddenly coupled by means of a drive belt to a second

flywheel sitting on a parallel shaft (see figure below). The initial angular velocity of the first

flywheel is !, that of the second is zero. The flywheels are uniform discs of masses Ma and Mc

with radii Ra and Rc respectively. The moment of inertia of a solid disc is I= 1
2MR

2. The drive belt

is massless and the shafts are frictionless. (a) Calculate the final angular velocity of each flywheel.

(b) Calculate the kinetic energy lost during the coupling process. Hint: if the belt does not slip,

the linear speeds of the two rims must be equal.

9. A solid sphere, a solid cylinder, and a thin-walled pipe, all of mass m, roll smoothly along

identical loop-the-loop tracks when released from rest along the straight section (see figure below).

The circular loop has radius R, and the sphere, cylinder, and pipe have radius r⌧R (i.e., the size

of the objects may be neglected when compared to the other distances involved). If h=2.8R, which

of the objects will make it to the top of the loop? Justify your answer with an explicit calculation.

The moments of inertia for the objects are listed below.

I =

8
>>><

>>>:

2
5mr

2 sphere

1
2mr

2 cylinder

mr
2 pipe

(1)

Hint: consider a single object with I=kmr
2
to solve the general problem, and evaluate these three

special cases only at the end.

h R

m

10. The rotational inertia (moment of inertia) of a collapsing spinning star drops to 1
3 its initial

value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?



• We can solve the general problem of a shape with      
I = kmr2 and just put in the shape factor later – saves 
work

• This is just conservation of mechanical energy, 
including the rotational energy.

• The objects change their center of mass height by        
h - 2R

• This doesn’t tell us if the object makes it to the top!
• only says what its velocity will be there if it does!
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of the objects will make it to the top of the loop? Justify your answer with an explicit calculation.

The moments of inertia for the objects are listed below.

I =

8
>>><

>>>:

2
5mr

2 sphere

1
2mr

2 cylinder

mr
2 pipe

(32)

Hint: consider a single object with I=kmr
2
to solve the general problem, and evaluate these three

special cases only at the end.

h R

m

Solution: To start with, we just need to do conservation of energy. The object goes through a

height h - 2R to get to the top of the loop. Including both rotational and translational kinetic

energy,

mg(h- 2R) =
1

2
mv

2 +
1

2
(kmr

2)!2 = (1+ k)

✓
1

2
mv

2

◆
(33)

This doesn’t tell us if the object actually makes it to the top of the loop or not. For that, we need

to be sure that the velocity is high enough to be consistent with the required centripetal force. The

centripetal force must be provided by the object’s weight.

mv
2

R
> mg (34)

v
2 > Rg (35)

Using the energy equation, we have another equation for v2. Combining:

v
2 =

2g (h- 2R)

1+ k
> Rg (36)

k 6 2 (h- 2R)

R
- 1 =

2h

R
- 5 (37)

Given h=2.8R, our condition is that k60.6. This is true for the sphere (k=2/5) and the cylinder



• For that, we must have enough centripetal force.
• Minimum condition is that the normal force vanishes 

(minimum interaction with surface):
• N + mg = mv2/R    à mg = mv2/R

• This gives us the minimum velocity to make the loop, 
v2 > Rg. Energy conservation gives us another 
equation for v
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of the objects will make it to the top of the loop? Justify your answer with an explicit calculation.

The moments of inertia for the objects are listed below.

I =

8
>>><

>>>:

2
5mr

2 sphere

1
2mr

2 cylinder

mr
2 pipe

(32)

Hint: consider a single object with I=kmr
2
to solve the general problem, and evaluate these three

special cases only at the end.

h R

m

Solution: To start with, we just need to do conservation of energy. The object goes through a

height h - 2R to get to the top of the loop. Including both rotational and translational kinetic

energy,

mg(h- 2R) =
1

2
mv

2 +
1

2
(kmr

2)!2 = (1+ k)

✓
1

2
mv

2

◆
(33)

This doesn’t tell us if the object actually makes it to the top of the loop or not. For that, we need

to be sure that the velocity is high enough to be consistent with the required centripetal force. The

centripetal force must be provided by the object’s weight.

mv
2

R
> mg (34)

v
2 > Rg (35)

Using the energy equation, we have another equation for v2. Combining:

v
2 =

2g (h- 2R)

1+ k
> Rg (36)

k 6 2 (h- 2R)

R
- 1 =

2h

R
- 5 (37)

Given h=2.8R, our condition is that k60.6. This is true for the sphere (k=2/5) and the cylinder



• Given h = 2.8R, our condition is k < 0.6
• This is true for the sphere and cylinder, but not the 

pipe. Pipe doesn’t make it.
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8. A flywheel rotating freely on a shaft is suddenly coupled by means of a drive belt to a second

flywheel sitting on a parallel shaft (see figure below). The initial angular velocity of the first

flywheel is !, that of the second is zero. The flywheels are uniform discs of masses Ma and Mc

with radii Ra and Rc respectively. The moment of inertia of a solid disc is I= 1
2MR

2. The drive belt

is massless and the shafts are frictionless. (a) Calculate the final angular velocity of each flywheel.

(b) Calculate the kinetic energy lost during the coupling process. Hint: if the belt does not slip,

the linear speeds of the two rims must be equal.

9. A solid sphere, a solid cylinder, and a thin-walled pipe, all of mass m, roll smoothly along

identical loop-the-loop tracks when released from rest along the straight section (see figure below).

The circular loop has radius R, and the sphere, cylinder, and pipe have radius r⌧R (i.e., the size

of the objects may be neglected when compared to the other distances involved). If h=2.8R, which

of the objects will make it to the top of the loop? Justify your answer with an explicit calculation.

The moments of inertia for the objects are listed below.

I =

8
>>><

>>>:

2
5mr

2 sphere

1
2mr

2 cylinder

mr
2 pipe

(1)

Hint: consider a single object with I=kmr
2
to solve the general problem, and evaluate these three

special cases only at the end.

h R

m

10. The rotational inertia (moment of inertia) of a collapsing spinning star drops to 1
3 its initial

value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?



• A sphere, cylinder, and pipe roll down a ramp. Which 
one reaches the bottom first?

• Does the radius, mass, etc. matter?
• Sphere first, then cylinder, then pipe.

• Largest k requires most energy to spin up, ends up 
with smallest translational velocity

• k doesn’t depend on m or R, just shape

• https://www.youtube.com/watch?v=8psVQHHUEcI
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https://www.youtube.com/watch?v=8psVQHHUEcI


Concepts: Torque
• Torque is due to the tendency of a force applied to an 

object to give a rotational acceleration.
• The SI units for torque are N • m.
• Rotational equilibrium requires the vector sum of 

the net external torque on an object equal zero.
• Mechanical equilibrium requires in addition that the 

vector sum of the net external force equal zero.
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Quantitative Tools: Torque
• If    is the position vector from a pivot to the location 

at which a force     is exerted on an object and θ is the 
angle between    and    , the torque τ produced by the 
force about the pivot is

where    is the component of    perpendicular to    and
is the component of     perpendicular to  .
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r 

Fr   

F

  τ ≡ rF sinθ = r⊥F = rF⊥

r⊥
r


F

F⊥

F r
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Quantitative Tools: Torque

• Translational equilibrium:

• Rotational equilibrium:

• Mechanical equilibrium:
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Fext∑ =


0.

 τ extϑ∑ = 0.

   τ extϑ∑ = 0 and

Fext∑ =


0
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Concepts: Rotation of a rigid object
• In free rotation an object rotates about its center of mass.
• In rotation about a fixed axis an object is constrained to rotate 

about a physical axis.
• In rolling motion without slipping there is no relative motion 

at the location where the object touches the surface.
• The external force on a rolling object changes the object’s 

center-of-mass kinetic energy.
• The external torque on a rolling object changes its rotational 

kinetic energy.
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Quantitative Tools: Rotation of a rigid object
• For both particles and extended bodies, the vector sum of the 

torques when rotation is about a fixed axis is

• For an object of radius R that is rolling without slipping, the 
motion of the center of mass is described by
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  τ extϑ∑ = Iαϑ

  

υcm x = Rωϑ

acm x = Rαϑ

Fext x∑ = macm x

τ extϑ∑ = Iαϑ
Slide 12-141



Quantitative Tools: Rotation of a rigid object
• The change in an object’s rotational kinetic energy resulting 

from torques is

• The kinetic energy of a rolling object is

• The change in the kinetic energy of a rolling object is
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  ΔKrot = τ extϑ∑( )Δϑ    (constant torques, rigid object)

  
K = Kcm + Krot =

1
2 mυcm

2 + 1
2 Iω 2 1

2

  ΔK = ΔKcm + ΔKrot

Slide 12-142



Concepts: Angular momentum
• A rotational impulse JJ is the amount of angular 

momentum transferred to a system from the 
environment by external torques.

• If the sum of the external torques due to forces 
exerted on a system is zero, the angular momentum of 
the system remains constant.
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Quantitative Tools: Angular momentum
• External torque caused by forces exerted on an object 

causes the object’s angular momentum LJ to change:
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τ extϑ∑ =

dLϑ

dt
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Quantitative Tools: Angular momentum
• The angular momentum law says that the change in the 

angular momentum of an object is equal to the rotational 
impulse given to the system:

• If the constant external torques on a system last for a time 
interval Δt, the rotational impulse equation says that the 
rotational impulse is

• The law of conservation of angular momentum states that if
then dLJ /dt = 0. This means that
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 ΔLϑ = Jϑ

  Jϑ = τ extϑ∑( )Δt

  
τ extϑ∑ =

dLϑ

dt
= 0⇒ΔLϑ = 0

 τ extϑ∑ = 0,
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Concepts: Rotational quantities as vectors
• A polar vector is a vector associated with a 

displacement.
• An axial vector is a vector associated with a rotation 

direction. This vector points along the rotation axis.
• The right-hand rule for axial vectors: When you curl 

the fingers of your right hand along the direction of 
rotation, your outstretched thumb points in the 
direction of the vector that specifies that rotation.
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Concepts: Rotational quantities as vectors
• Right-hand rule for vector products: When you align 

the fingers of your right hand along the first vector in 
a vector product and curl them from that vector to the 
second vector in the product through the smaller 
angle between the vectors, your outstretched thumb 
points in the direction of the vector product. 

• The magnitude of the vector product of two vectors is 
equal to the area of the parallelogram defined by 
them.
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Quantitative Tools: Rotational quantities as 
vectors
• The magnitude of the vector product of vectors    and     that make an 

angle θ ≤ 180° between them when they are tail to tail is

• If    is the vector from the origin of a coordinate system to the location 
where a force    is exerted, the torque about the origin due to    is

• If    is the vector from the origin of a coordinate system to a particle that 
has momentum   , the angular momentum of the particle about the origin is
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A×

B = ABsinθ


A


B

  
τ = r ×


F


L = r × p

  
r 

F

F

r p
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