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Section Goals
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Section 16.1: Representing waves graphically

You will learn to
• Visualize waves in one dimension using frame-sequence 

diagrams and displacement curves.
• Differentiate the wave speed, c, and the speed of the particles

of the medium, v
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Section 16.1: Representing waves graphically

• A transverse wave is a 
wave in which the 
medium movement is 
perpendicular to the 
wave pulse movement.

• For example, a wave 
pulse travels along a 
string in a horizontal 
direction while the 
particles that make up 
the string move up and 
down.
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Section 16.1: Representing waves graphically

• As we can see from the figure, 
it is important to realize that
• The motion of a wave (or 

of a single wave pulse) is 
distinct from the motion of 
the particles in the 
medium that transmits the 
wave (or pulse). 

• Wave moves right, 
particles move up & down
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• The wave speed c of a 
wave pulse along a string 
is constant.

© 2015 Pearson Education, Inc.

Section 16.1: Representing waves graphically
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• Part (a) shows a “snapshot” of a triangular pulse traveling 
along a string. 

• The vector     represents the displacement of one particular 
particle located at a position x along the string at a given 
instant t. 

© 2015 Pearson Education, Inc.

Section 16.1: Representing waves graphically
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• The graphical representation of all the particle displacements 
at a given instant is shown in part (b). 

• The curve gives the y components of the displacements of the 
particles of the string as a function of the position x along the 
string. 

• This is called the wave function.

© 2015 Pearson Education, Inc.

Section 16.1: Representing waves graphically
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Section 16.1: Representing waves graphically

• The wave pulse shown in 
part (a) can also be 
represented by plotting the 
displacement of one particle 
on the string as a function of 
time.

• Such a plot gives us the 
displacement curve of the 
wave pulse. 

• Parts (c) and (d) show the 
displacement curve for the 
particle at x = 0 m and
x = 1.0 m. Note they are 
mirror images of each other
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Section 16.1: Representing waves graphically

• In a longitudinal wave, the 
medium movement is 
parallel to the pulse 
movement.

• Here we see a longitudinal 
wave propagating along a 
spring. 

• If you rapidly displace the 
left end of the spring back 
and forth, a disturbance 
travels down the spring.

• Both waves and medium 
elements move to the right
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Section 16.1: Representing waves graphically

• As shown in the figure, 
a longitudinal wave can 
also be represented by 
wave functions and 
displacement curves.
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Section Goals
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Section 16.2: Wave propagation

You will learn to
• Analyze the kinematics of wave motion and the 

time-evolution of the initial disturbance.
• Differentiate carefully between the motion of the 

wave itself and the motion of the particles of the 
medium the wave propagates through.

• Define the wavelength of a periodic wave.
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Section 16.2: Wave propagation

• Let us consider a 
collection of beads 
connected by short 
strings.

• You pull on the first 
bead, it pulls on the 
second …

• Initial disturbance is the 
only cause of motion, so 
motion of any bead 
related to it alone
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• Two somewhat counterintuitive points:
1. When a particle of the string is displaced from 

its equilibrium position, its velocity v and 
acceleration a are determined only by the 
initial disturbance and are independent of the 
wave speed c. 

2. For a given disturbance, high wave speeds 
yield wave pulses that are stretched out and 
low wave speeds result in pulses that are more 
compressed.

© 2015 Pearson Education, Inc.

Section 16.2: Wave propagation
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• As illustrated in the figure, we can determine that
• The speed c of a wave propagating along a string increases 

with increasing tension in the string and decreases with 
increasing mass per unit length along the string.

• Think about guitar strings

Section 16.2: Wave propagation
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Section 16.2: Wave propagation

• If one end of a string is 
made to execute a periodic 
motion, the resulting wave 
is called a periodic wave.

• A harmonic wave, shown 
in the figure, is a type of 
periodic wave obtained by 
moving the end of the string 
so that it oscillates 
harmonically. (Sinusoidal)

• Not all periodic waves are 
harmonic



Slide 16-17© 2015 Pearson Education, Inc.

Section 16.2: Wave propagation

• A periodic wave repeats itself 
over a distance called the 
wavelength, denoted by λ. 

• Each time one point on the string 
executes a complete oscillation, 
the wave advances by one 
wavelength.

• Therefore
• The wavelength of a

periodic wave is equal to the 
product of the wave speed 
and the period of the wave 
motion. λ = cT
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Section 16.2: Wave propagation

• As shown in the figure, moving 
your hand up and down more 
quickly does not generate a 
faster-traveling pulse. 

• To a good approximation, we 
determine experimentally that
• The speed c of a wave 

propagating along a string 
is independent of the 
velocities    of the individual 
pieces of string. The value 
of c is determined entirely 
by the properties of the 
medium.

 

υ
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Section 16.2: Wave propagation

• The figure illustrates how 
a propagating wave pulse 
caries two forms of 
energy along with it:
• Kinetic energy 

associated with 
individual particles

• Elastic potential 
energy associated with 
the stretching of the 
string
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Section 16.3: Superposition of waves

Section Goals
You will learn to
• Visualize the superposition 

of two or more waves 
traveling through the same 
region of a medium at the 
same time.

• Define the nodes for a 
stationary wave 
disturbance.
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Section 16.3: Superposition of waves

• Waves exhibit a property 
known as the 
superposition of waves:
• If two or more waves 

overlap in a medium 
that obeys Hooke’s 
law, then the resulting 
wave function at any 
instant is the algebraic 
sum of the individual 
waves.

• Hooke = linear F(x)
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Section 16.3: Superposition of waves

• The phenomenon of two 
waves overlapping is 
called interference.

• If two waves with the 
same sign overlap, the 
resultant displacement is 
greater than that of either 
wave.

• This is called constructive 
interference.
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Constructive

http://www.acs.psu.edu/drussell/Demos/superposition/superposition.html
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Section 16.3: Superposition of waves

• If two waves with 
opposite signs overlap, 
the resultant displacement 
is smaller than that of 
either wave.

• This is called destructive 
interference.
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Section 16.3: Superposition of waves

• If two waves of same size 
and shape but having 
opposite signs cross each 
other, the displacement of 
each wave cancels out. 

• A point that remains 
stationary in a medium 
through which waves move 
is called a node.
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Section 16.3: Superposition of waves

• The figure shows the 
energy makeup of two 
pulses traveling in opposite 
directions. 

• The instant the pulses 
overlap, the displacement is 
zero and all the energy is 
kinetic. 

• From this we can determine 
that
• A wave contains equal 

amounts of kinetic 
energy and potential 
energy.

Total: 2K+2U

Total: 4K ⇒ K=U
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Section 16.4: Boundary effects

Section Goals
You will learn to
• Model the reflection of 

waves from fixed and free 
ends.

• Represent the boundary 
effects for overlapping 
waves graphically.
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Section 16.4: Boundary effects

• When a wave pulse reaches 
a boundary where the 
transmitting medium ends, 
the pulse is reflected back. 

• Consider a pulse 
propagating along a string 
that is anchored to an 
immovable wall. 

• The leading edge of the 
pulse pulls up on the wall, 
and the wall pulls down on 
the string. 

• Therefore, the reflected 
pulse is inverted.
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Section 16.4: Boundary effects

• The procedure for 
determining the shape of a 
reflected wave pulse can 
be illustrated using the 
example shown.

• Sum of real pulse and its 
reflection
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Section 16.4: Boundary effects

• Now let us consider 
reflection from a free 
end. 

• As the figure shows, 
the reflected wave in 
this case is not 
inverted.
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Section 16.4: Boundary effects

• When a pulse reaches a 
boundary between two media, 
the pulse is partially transmitted 
and partially reflected. 

• Mass per unit length is called 
the linear mass density µ=m/l. 

• The nature of the reflected and 
transmitted waves depends on 
whether µ1 is greater or smaller 
than µ2.

• A given pulse in a heavy string 
has a greater affect on a light 
string (and vice versa)
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Quantitative Tools
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Chapter 16: Waves in One Dimension
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Section Goals
You will learn to
• Represent traveling waves in one dimension mathematically using 

wave functions.
• Model harmonic traveling waves using trigonometric functions.
• Define the wave number, k, for a traveling harmonic wave.

© 2015 Pearson Education, Inc.

Section 16.5: Wave functions



Slide 16-34

• Dy is the displacement of any particle on the string measured in Earth’s 
reference frame.

• We can write Dy = f(x, t), where f(x, t) is called the time-dependent 
wave function.

• f(x, t) completely specifies the changing shape of the wave as seen from 
Earth’s reference frame. 

• We can show that for a wave propagating at speed c: 
Dy = f(x – ct)

© 2015 Pearson Education, Inc.

Section 16.5: Wave functions
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Section 16.5: Wave functions

• Let us consider a transverse 
harmonic wave traveling 
along a string. 

• We can see from part (b) 
that during a time interval 
of one period, the wave 
advances by a wavelength. 

• Because the wave moves at 
a speed c, and f = 1/T, we 
get

λf = c
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• We have previously defined the angular frequency:
ω = 2πf = 2π/T    “how many periods per sec”

• We define the wave number k in a similar way

k has SI units of m–1 “how many waves fit in 1 m”

• For a transverse harmonic wave traveling in the positive 
x direction, the y component of the displacement is

Dy = f (x, t) = A sin (kx – ωt + φi)
• φi is the initial phase or the phase at x = 0, t = 0. 
• A is the amplitude.

© 2015 Pearson Education, Inc.

Section 16.5: Wave functions

  
k = 2π

λ



Slide 16-37

• Fourier’s theorem from Section 15.3 can be applied to waves. 
• Any wave can be expressed in terms of a sum of sinusoidally

varying waves. (sine waves form a complete orthonormal set)

• The figure shows a wave pulse obtained by adding together a 
set of harmonic waves.

© 2015 Pearson Education, Inc.

Section 16.5: Wave functions
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Building a square wave

• Infinite series of sine waves
• Odd frequencies

http://mechatronics.colostate.edu/figures/4-4.jpg
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Checkpoint 16.17

(a) Which of the following functions could represent a 
traveling wave?

(i) A cos(kx + ωt) (ii) 
(iii) b(x – ct)2e–x (iv) –(b2t – x)2

(b) Which of the following functions can be made into a traveling 
wave?

(i) x/(1 + bx2) (ii) xe–kx (iii) x2

16.17

  e−k x − ct
2
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Checkpoint 16.17

(a) Which of the following functions could represent a 
traveling wave?

(i) A cos(kx + wt) (ii) 
(iii) b(x – ct)2e–x (iv) –(b2t – x)2

All but (iii). The rest have the form f(x-ct).

(b) Which of the following functions can be made into a traveling 
wave?

(i) x/(1 + bx2) (ii) xe–kx (iii) x2

All of them, with the substitution x à x-ct or x+ct

16.17

  e−k x − ct
2
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Section Goals
You will learn to
• Establish the geometric and mathematical properties of standing waves.
• Derive the mathematical formulas that give the positions of the nodes 

and antinodes for standing waves on a string fixed at each end.

© 2015 Pearson Education, Inc.

Section 16.6: Standing waves
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Section 16.6: Standing waves

• The figure shows the 
interference between a 
incident harmonic wave on a 
string and the reflected wave 
from the fixed end of the 
string. 

• The points on the string that 
have zero displacement are 
called nodes. 

• Halfway between the nodes 
are the antinodes where the 
particles in the medium 
oscillate with maximum 
displacement.
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• The pulsating stationary pattern caused by harmonic waves of 
the same amplitude traveling in opposite direction is called a 
standing wave. 

• The figure illustrates how standing waves come about.

© 2015 Pearson Education, Inc.

Section 16.6: Standing waves
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Section 16.6: Standing waves

• One wave moves: constructive & destructive interference



Slide 16-45© 2015 Pearson Education, Inc.

Section 16.6: Standing waves

• Waves move at same speed in opposite directions: standing wave
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• A sinusoidal wave traveling to the right along the x-axis 
with angular frequency ω, wave number k, and amplitude 
A is

D1y = f1(x, t) = A sin(kx - ωt)
• The wave traveling to the left is

D2y = f2(x, t) = A sin(kx + ωt)
• The combined wave is

Dy = f1(x, t) + f2(x, t) = A[sin(kx - ωt) + sin(kx + ωt)] 
• By simplifying this using trigonometric identities, we get
Dy = f1(x, t) + f2(x, t) = 2A sin kx cos ωt = [2A sin kx] cos ωt

© 2015 Pearson Education, Inc.

Section 16.6: Standing waves
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• At points that are nodes in a standing wave sin kx must be zero.
• Therefore, at these points kx = nπ, where n is a whole number.
• Using the definition of k = 2π/λ, we obtain

• So, the nodes occur at

© 2015 Pearson Education, Inc.

Section 16.6: Standing waves

   
2π
λ

x = nπ n = 0, ±1, ± 2,…

   
x = 0, ± λ

2
, ± λ, ± 3λ

2
,…
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• Antinodes occur when sin kx = �1.
• This requires that kx = n(π/2), where n is an odd whole number. 
• So, the antinodes occur at

© 2015 Pearson Education, Inc.

Section 16.6: Standing waves

   
x = ± λ

4
, ± 3λ

4
, 5λ

4
,…
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Checkpoint 16.19

(a) Do two counter-propagating waves that have the 
same wavelength but different amplitudes cause standing waves?

(b) Do two counter-propagating waves that have the same 
amplitude but different wavelengths cause standing waves?

16.19



Slide 16-50© 2015 Pearson Education, Inc.

Checkpoint 16.19

(a) Do two counter-propagating waves that have the 
same wavelength but different amplitudes cause standing waves?

No. If one amplitude were twice the other, half of it forms a 
standing wave with the whole of the other one. That leaves half a 
traveling wave yet.

(b) Do two counter-propagating waves that have the same 
amplitude but different wavelengths cause standing waves?

No, in this case interference for a given position is constructive at 
some instants and destructive at others. For a standing wave, it 
has to be the same at all instants for a given position.

16.19
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Section Goal
You will learn to
• Derive equations that give the speed of wave 

propagation for traveling waves on a uniform mass 
density string.

© 2015 Pearson Education, Inc.

Section 16.7: Wave speed
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• The procedure for deriving an expression for the 
wave speed c is illustrated in the figure. The 
derivation is in the text.

© 2015 Pearson Education, Inc.

Section 16.7: Wave speed
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• The mass per unit length of a uniform string is called 
the linear mass density (µ), and is defined as

• We can derive the wave speed of a transverse wave 
on a string to be

where     is the string tension.
• Guitar/piano: tighten to tune, vary string weight to 

change fundamental tone.
© 2015 Pearson Education, Inc.

Section 16.7: Wave speed

   
µ ≡ m


(uniform linear object)



Slide 16-54

Example 16.4 Measuring mass
You use a hammer to give a sharp horizontal blow to a 
10-kg lead brick suspended from the ceiling by a wire 
that is 5.0 m long. It takes 70 ms for the pulse generated 
by the sudden displacement of the brick to reach the 
ceiling. What is the mass of the wire?

© 2015 Pearson Education, Inc.

Section 16.7: Wave speed
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Section 16.7: Wave speed

Example 16.4 Measuring mass (cont.)
� GETTING STARTED I begin by 
making a sketch of the situation 
(Figure 16.40a). Because I know the 
pulse travels 5.0 m in 70 ms, I can 
determine the wave speed along the 
wire: c = (5.0 m)/(0.070 s) = 71 m/s. 
This wave speed depends on the 
linear mass density of the wire and 
the tension in the wire. The latter is 
determined by the force exerted by 
the brick on the wire.
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Section 16.7: Wave speed

Example 16.4 Measuring mass (cont.)
� GETTING STARTED 
Because the force exerted 
by the brick on the wire 
and the force exerted by 
the wire on the brick are 
equal in magnitude, I draw 
a free-body diagram for 
the brick (Figure 16.40b) 
to help me determine that 
magnitude.
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Example 16.4 Measuring mass (cont.)
� DEVISE PLAN To determine the mass of the wire, I 
can use Eq. 16.25. To use this equation, I must know the 
length of the wire, which is given, and the linear mass 
density µ, which I can calculate from Eq. 16.30. 

To obtain µ from Eq. 16.30, I need to know c (which I 
already calculated) and the tension     in the wire. The 
tension is just the weight of the brick.

© 2015 Pearson Education, Inc.

Section 16.7: Wave speed
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Example 16.4 Measuring mass (cont.)
� EXECUTE PLAN The tension is equal to the 
downward force of gravity exerted on the brick:              

=     (10 kg)(9.8 m/s2) = 98 N. 

Substituting the values for     and c into Eq. 16.30, I 
calculate the linear mass density of the wire µ =    /c2 = 
(98 N)/(71 m/s)2 = 0.019 kg/m. The mass of the wire is 
thus m = (0.019 kg/m)(5.0 m) = 9.5 � 10–2 kg. �

© 2015 Pearson Education, Inc.

Section 16.7: Wave speed
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Example 16.4 Measuring mass (cont.)
� EVALUATE RESULT The value I obtain—about 
0.1 kg—is not unreasonable for a 5.0-m-long wire that 
can support a lead brick.

© 2015 Pearson Education, Inc.

Section 16.7: Wave speed
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A vibrating string is clamped at both ends, with one of the 
clamps being a tension-adjustment screw. By what factor must 
you change the tension in the string to double its frequency of 
vibration without changing the wavelength?

1. 2
2. 1/2
3. 22

4. (1/2)2

5. 21/2

6. (1/2)1/2

7. None of the above

© 2015 Pearson Education, Inc.

Section 16.7
Question
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A vibrating string is clamped at both ends, with one of the 
clamps being a tension-adjustment screw. By what factor must 
you change the tension in the string to double its frequency of 
vibration without changing the wavelength?

1. 2
2. 1/2
3. 22 – f = c/λ ~ √T. Doubling f means T increases fourfold
4. (1/2)2

5. 21/2

6. (1/2)1/2

7. None of the above

© 2015 Pearson Education, Inc.

Section 16.7
Question
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Section Goals
You will learn to
• Calculate the kinetic and potential energy for a 

wave disturbance in one dimension.
• Express the average power carried by a harmonic 

wave.

© 2015 Pearson Education, Inc.

Section 16.8: Energy transport in waves
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Section 16.8: Energy transport in waves

• Let Eλ denote the energy that must be 
supplied over a period T to generate a 
wave on a string. (one wavelength)

• Then the average power that must be 
supplied to generate the wave is given by

• Using the figure, or from simple harmonic 
motion:

• And the average power is

  
Pav ≡

ΔE
Δt

=
Eλ

T

E� =
1

2
m!2A2 =

1

2
(µ�)!2A2

Pav =
1

2
µ�A2!2/T =

1

2
µA2!2c
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Section Goals
You will learn to
• Derive the general equation for the time- and space-

evolution of a wave using differential calculus.
• Relate the speed of wave propagation, c, to physical 

quantities for the case of a wave on a string.

© 2015 Pearson Education, Inc.

Section 16.9: The wave equation
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Section 16.9: The wave equation

• The figure shows a piece of a 
string that has been displaced 
by a passing wave. 

• With the use of this figure, 
we can show that the wave 
function f (x, t) that 
represents a wave is a 
solution of the wave 
equation given by 

(Read ∂ as d …)
  
∂2 f
∂x2 = 1

c2

∂2 f
∂t2 ,
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A wave pulse moves along a stretched string. Describe 
the relationship among the speed at which the pulse 
moves, the pulse curvature, and the acceleration of small 
segments of the string.

1. Pulse speed ∝ pulse curvature ∝ acceleration
2. Pulse speed ∝ pulse curvature ∝ 1/acceleration
3. Pulse speed ∝ 1/pulse curvature ∝ acceleration
4. 1/Pulse speed ∝ pulse curvature ∝ acceleration
5. 1/Pulse speed ∝ 1/pulse curvature ∝ 1/acceleration

© 2015 Pearson Education, Inc.

Section 16.9
Question 9
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A wave pulse moves along a stretched string. Describe the 
relationship among the speed at which the pulse moves, 
the pulse curvature, and the acceleration of small 
segments of the string.

4. 1/Pulse speed ∝ pulse curvature ∝ acceleration

Curvature ~ second derivative w.r.t. position
Acceleration ~ second derivative w.r.t. time

wave equation à curvature ~ acceleration
Established that lower speed waves have higher curvature

© 2015 Pearson Education, Inc.

Section 16.9
Question 9
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Concepts: Representing waves
• A wave is a disturbance that propagates through 

material (the medium) or through empty space.
• A wave pulse is a single isolated propagating 

disturbance.
• The wave function represents the shape of a wave at 

any given instant and changes with time as the wave 
travels.

© 2015 Pearson Education, Inc.

Chapter 16: Summary
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Concepts: Representing waves
• The wave speed c is the speed at which a wave 

propagates. For a mechanical wave, c is different 
from the speed v of the particles of the medium and is 
determined by the properties of the medium.

• The displacement of any particle of a medium 
through which a mechanical wave travels is a vector 
that points from the equilibrium position of the 
particle to its actual position.

© 2015 Pearson Education, Inc.

Chapter 16: Summary
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Concepts: Representing waves
• In a transverse mechanical wave, the particles of the 

medium move perpendicular to the direction of the 
pulse movement.

• In a longitudinal mechanical wave, these particles 
move parallel to the direction of the pulse movement.

• In a periodic wave, the displacement at any location 
in the medium is a periodic function of time. 
A periodic wave is harmonic when the particle 
displacement can be represented by a sinusoidally 
varying function of space and time.

© 2015 Pearson Education, Inc.

Chapter 16: Summary
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Quantitative Tools: Representing waves
• If a wave travels in the x direction with speed c and f (x) 

describes the form (shape) of the wave, then the y component 
Dy of the displacement of a particle of the medium is

Dy = f (x – ct)
if the wave travels in the positive x direction and

Dy = f (x + ct)

if the wave travels in the negative x direction.

• The wavelength λ of a periodic wave is the minimum distance 
over which the wave repeats itself.

© 2015 Pearson Education, Inc.

Chapter 16: Summary



Slide 16-82

Quantitative Tools: Representing waves
• For a periodic wave of period T, frequency f, and speed c, the 

wave number k is

• The wavelength λ is
λ = cT,

• The angular frequency ω is

• The wave speed is
c = λf.

© 2015 Pearson Education, Inc.

Chapter 16: Summary

  
k = 2π

λ
.

  
ω = 2π

T
,
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Quantitative Tools: Representing waves
• For a transverse harmonic wave of amplitude A and 

initial phase ϕi traveling in the positive x direction, 
the y component Dy of the displacement of a particle 
of the medium is

Dy = f (x, t) = A sin(kx – ωt + ϕi).

© 2015 Pearson Education, Inc.

Chapter 16: Summary
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Concepts: Combining waves

© 2015 Pearson Education, Inc.

Chapter 16: Summary

• Superposition of waves: The resultant displacement of two or 
more overlapping waves is the algebraic sum of the 
displacements of the individual waves.

• Interference occurs when two waves overlap. The interference 
is constructive when the displacements due to the two waves 
are in the same direction and destructive when the 
displacements are in opposite directions.

• If the displacement at a point in space remains zero as a wave 
travels through, that point is a node. The displacement at other 
points typically varies with time. If the displacement at a point 
in space varies over the greatest range as a wave travels 
through, that point is an antinode.
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Concepts: Combining waves

© 2015 Pearson Education, Inc.

Chapter 16: Summary

• When a wave pulse (the incident wave) reaches a boundary 
where the transmitting medium ends, the pulse is reflected, 
which means it reverses its direction.

• When a wave pulse is reflected from a fixed boundary, the 
reflected pulse is inverted relative to the incident pulse. When 
the reflection is from a boundary that is free to move, the 
reflected pulse is not inverted.

• A standing wave is a pulsating stationary pattern caused by 
the interference of harmonic waves of equal amplitude and 
wavelengths traveling in opposite directions.
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Quantitative Tools: Combining waves
• If two harmonic waves of equal wavelength λ and equal 

amplitude A travel in opposite directions on a string, they 
produce a standing wave. The y component Dy of the string 
displacement at any position x along the string is given by

Dy = 2A sin kx cos ωt.
• The nodes occur at

• The antinodes occur at
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x = 0,  ± λ

2
, ± λ,  ± 3λ

2
, …

  
x = ± λ

4
,  ± 3λ

4
,  ± 5λ

4
, …
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Quantitative Tools: Waves on a string
• For a uniform string of mass m and length ℓ, the 

linear mass density µ (mass per unit length) is

• The speed of a wave on a string under tension    is
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µ = m


.
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Quantitative Tools: Waves on a string
• The average power Pav that must be supplied to 

generate a wave of period T is

• Any function f of the form f (x – ct) or f (x + ct) that 
represents a wave traveling with speed c is a solution 
of the wave equation:
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  Pav =
1
2 µλA2ω 2 /T = 1

2 µA2ω 2c.

  
∂2 f
∂x2 = 1

c2

∂2 f
∂t2 .


