University of Alabama
 Department of Physics and Astronomy

PH ro6-4 / LeClair
Fall 2008

Sample Exam r Questions

I. A charge of $100 \mu \mathrm{C}$ is at the center of a cube of side 0.8 m . What is the flux through one face of the cube?
$\square 1.9 \times 10^{6} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

- $3.7 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
- $2.5 \times 10^{1} 2 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
- 0

2. Suppose three positively charged particles are constrained to move on a fixed circular track. If all the charges were equal, an equilibrium arrangement would obviously be a symmetrical one with the particles spaced 120° apart around the circle. Suppose two of the charges have equal charge q, and the equilibrium arrangement is such that these two charges are 90° apart rather than 120°. What is the relative magnitude and sign of the third charge?

- larger than either q_{1} or q_{2} and positive
\square smaller than either q_{1} or q_{2} and positive
- larger than either q_{1} or q_{2} and negative
- smaller than either q_{1} or q_{2} and negative

3. A positive charge of q and a negative charge of $-5 q$ are placed a distance d apart. For reference, let us say the charges are along a horizontal line, with the positive charge on the right and the negative charge on the left. Determine one point (other than infinity) at which the total electric field is zero.
\square to the right of the negative charge

- to the right of the positive charge
\square to the right of the negative charge
\square to the left of the negative charge

4. If the net flux through a closed surface is zero, the following four statements could be true. Which of the statements must be true?

- There are no charges inside the surface
\square The net charge inside the surface is zero
- The electric field is zero everywhere on the surface
- The number of electric field lines entering the surface equals the number leaving the surface

5. In the figure above, a point charge $1 Q^{+}$is at the center of an imaginary spherical Gaussian surface and another point charge $2 Q^{+}$ is outside of the Gaussian surface. Point P is on the surface of the sphere. Which one of the following statements is true?
\square Both contribute to the net electric flux through the sphere but only $1 Q^{+}$contributes to the electric field at point P.

- Both charges contribute to the net electric flux through the sphere but only $2 Q^{+}$contributes to the electric field at point P.
\square Only $1 Q^{+}$contributes to the net electric flux through the sphere but both charges contribute to the electric field at point P.
- Only $2 Q^{+}$contributes to the net electric flux through the sphere but both charges contribute to the electric field at point P.
- Only $1 Q^{+}$contributes to the net electric flux through the sphere and to the electric field at point P on the sphere.
- Only $2 Q^{+}$contributes to the net electric flux through the sphere and to the electric field at point P on the sphere.
- I don't know (this answer is worth $\mathrm{I} /$ ro of full credit)

6. A slab of insulating material, infinite in two of its three dimensions, has a uniform positive charge density ρ, shown at left. Suppose an electron of charge $-e$ and mass m_{e} can more freely within the slab, and is released from rest at a distance x from the center. The electron will subsequently undergo simple harmonic motion; which expression gives the correct variation of frequency with ρ, e, and m_{e} ?
$\square f \propto \sqrt{\rho e / m_{e}}$

- $f \propto \sqrt{\rho m_{e} / e}$
- $f \propto \rho m_{e} / e$
- $f \propto \rho e / m_{e}$
$\square f \propto \sqrt{\rho e m_{e}}$

7. A sphere the size of a basketball is charged to a potential of -1000 V . About how many extra electrons are on it, per cm^{2} of surface?

- 4×10^{3}
- 5×10^{7}
- 8×10^{10}
- 9×10^{21}

8. A spherical balloon contains a positively charged object at its center. As the balloon is inflated to a greater volume while the charged object remains at the center, does the electric flux at the surface of the balloon:
\square increase
\square decrease

- remain the same

ro. A capacitor is constructed from two square plates of sides l and separation d. A dielectric is inserted a distance x into the capacitor, as shown at right. In what direction is the force on the dielectric?
\square up
\square to the right
\square to the left
\square down
\square there is no net force

II. Referring to the figure above, in what direction would the force be if the inserted section were a conductor instead of a dielectric?
\square up
\square to the right
- to the left
- down
\square there is no net force

12. An electron (of charge $-e$ and mass m_{e}) enters a region of uniform electric field $\overrightarrow{\mathbf{E}}=800 \hat{\mathbf{x}}[\mathrm{~N} / \mathrm{C}]$ with velocity $\overrightarrow{\mathbf{v}}_{i}=1.5 \times$ $10^{5} \hat{\mathbf{x}}[\mathrm{~m} / \mathrm{s}]$. What is magnitude the acceleration $|\overrightarrow{\mathbf{a}}|$ of the electron due to the electric field?

- $-3.5 \times 10^{13}\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- $4.6 \times 10^{8}\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- $-1.4 \times 10^{14}\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- $6.8 \times 10^{12}\left[\mathrm{~m} / \mathrm{s}^{2}\right]$

13. In the figure at left, three point charges are connected by unbreakable strings of length d. What is the equilibrium angle $2 \theta:$:a $^{\text {a }}$
$\square 90^{\circ}$

- 180°
- 135°
- 90°

$$
{ }^{a} \text { Note that } \frac{d}{d x} \frac{1}{\sin x}=-\frac{\cos x}{\sin ^{2} x} \text { and } \frac{d}{d x} \frac{1}{\cos x}=\frac{\sin x}{\cos ^{2} x} .
$$

