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Instructions:
1. Answer all questions below. Show your work for full credit.
2. Due before 5pm, 5 September 2008
3. Email: pleclair@ua.edu; hard copies: Gallalee 206 or Bevill 228
4. You may collaborate, but everyone must turn in their own work

1. Purcell 1.16 The sphere of radius a was filled with positive charge at uniform density ρ. Then a smaller
sphere of radius a/2 was carved out, as shown in the figure, and left empty. What are the direction and
magnitude of the electric field at A? At B?
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Figure 1: Problem 1

By the principle of superposition, a carved out sphere of positive charge is equivalent to a filled sphere
of positive charge plus a smaller sphere of radius a/2 having a charge density −ρ (see figure below).
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Figure 2: Problem 1: using superposition



Thus, the original, nasty-seeming problem is just equivalent to finding the electric field due to two
spheres. Further, we earlier derived from Gauss’ law that any spherically symmetric charge distribu-
tion is equivalent to a point charge, so long as you are considering points outside the distribution.
Taking that into account, we actually only have to worry about the field due to point charges - even
easier!

At point A, we are at the exact center of the larger sphere, and by symmetry, its net contribution
to the electric field should be zero. We are also on the edge of the smaller sphere, and since we are
outside its volume, we may consider it as a point charge a distance a/2 away. The magnitude of the
equivalent point charge is the same as the total charge on the smaller sphere, which we can find by
multiplying its volume by the charge density:
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Now we can find the electric field at A easily, noting that the field from the smaller sphere (and
equivalent point charge) must be pointing in the vertical direction, which we will call the ŷ direction.
Formally, we should say that the appropriate unit vector points in the−ŷ direction, from the charge’s
center to point A, but this is counteracted by the negative charge density:
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Point B? Now we are outside of both spheres, and both contribute to the electric field. The big
sphere is equivalent to a point charge Qlarge a distance a away. We can find Qbig just like we found
Qsmall:
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We still have the smaller sphere as well, now acting like a point charge a distance 3a/2 away. The total
electric field is just the superposition of that from the two effective point charges, we just need to keep
in mind that the smaller points in the ŷ direction (up), while the larger points in the −ŷ direction
(down), since their charges are opposite:

~Etot = ~Ebig + ~Esmall =
keQbig

a2
(−ŷ) +
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Any point inside the cavity? As a bonus, it turns out we can find the field at any point inside the
cavity, it is not much harder at all. Take the origin to be the center of the large sphere. From this
coordinate system, the center of the small sphere can be represented by a position vector a

2 ŷ. The
electric fields generated by each sphere is most easily represented with their respective radial vectors~r
and~r ′ as shown in the figure below -~r gives the field from the larger sphere, and~r′ from the smaller.
However, we can see from the figure that ~r =~r′ + a

2 ŷ. For any point within the hollow cavity, at
an arbitrary point represented by~r, we can easily find the amount of charge enclosed from the larger
and smaller spheres:
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From the enclosed charges, we can now readily find the total field:
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Figure 3: Problem 1: using superposition

2. Purcell 1.33 Imagine a sphere of radius a filled with negative charge −2e of uniform density. Imbed
in this jelly of negative charge two protons and assume that in spite of their presence the negative charge
remains uniform. Where must the protons be located so that the force on each of them is zero?

The protons should be placed at a distance a/2 from the center of the sphere of negative charge, sym-
metric about the sphere’s midpoint.

The forces on the protons from each other will be equal and opposite. Therefore, the forces on them
from the negative charge distribution must be equal and opposite also. This requires that they lie on a
line through the center and are equidistant from the center. The force on each proton at radius r from
the negative charge will be proportional to the amount of negative charge lying inside a sphere of
radius r. For purposes of finding the electric field, we may treat all of this charge as if it were a point
charge sitting in the center. We ignore all negative charge outside the radius of the proton positions.
The negative charge inside the radius r is:
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This charge q(r) will give an electric field at the position of each proton. Since the charge q(r) is
spherically symmetric, it will be the same as the field from a point charge q(r) at a distance r:
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The force on each proton must be zero, the sum of the attractive force due to the charge q(r) and the
repulsive force from the other proton. Since a proton has a charge e, the attractive force is qE(r). The
repulsive force between the protons is easily calculated noting their charge e and separation 2r:
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3. Purcell 1.34 Four positively charged bodies, two with charge Q

and two with charge q, are connected by four unstretchable strings
of equal length. In the absence of external forces they assume the
equilibrium configuration shown in the diagram. Show that tan3 θ=
q2/Q2. This can be done in two ways. You could show that this
relation must hold if the total force on each body, the vector sum of
string tension and electrical repulsion, is zero. Or you could write
out the expression for the energy U of the assembly and minimize
it.

Energy-based approach. Let the length of the strings connecting adjacent Q and q charges be d. Call
the distance between the two Q charges horizontally l, and the vertical distance between the two q
charges h. Using trigonometry, then:
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The total potential energy of this system can be found by adding the potential energies of all unique
pairs of charges, recalling that for a pair of point charges q1 and q2 separated by a distance r12 the
potential energy is keq1q2/r12. We also note that there are four equivalent pairings of the q and Q
charges, all separated by a distance d.

U =
keQ

2

l
+

keq
2

h
+ 4

keQq

d

=
keQ

2

2d cos θ
+

keq
2

2d sin θ
+ 4

keQq

d

Now we have the potential energy of the entire system as a function of the angle θ. Notice that the
last term - the potential energy due to the charges fixed by the string - does not depend on θ, since the
distance between adjacent q and Q charges is fixed by the length of the string.

At equilibrium, this potential energy should be at a minimum with respect to any angular variation.
If U(θ) should be at a minimum, we must have dU/dθ = 0:
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Solving the equation above,
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Now, we have forgotten to be careful about one thing: is this a maximum, a minimum, or an inflec-
tion point? Setting dU/dθ = 0 only ensures we have found one of the three; recall from Calculus I
which one it is depends on the sign of d2U/dθ2. One can argue on physical grounds that it must be a
minimum, but mathematically one must show that d2U/dθ2 > 0 to be certain.

Finding the second derivative of U(θ) is rather messy; you should find something like this once you
grind through it:
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For the present problem, the angle θ can only be between 0 and 90◦ without breaking the strings.
The equation above is positive over that entire range of angles (though singular at the endpoints 0
and 90◦), which means that d2U/dθ2 > 0 for any physically possible choice of θ, and we have indeed
found a minimum of potential energy, rather than a maximum or inflection point. Thus, our condi-
tion represents not only a minimum, but in fact a stable minimum energy situation.

Force-based approach. First, refer to the figure below, where we have drawn a simple free-body dia-
gram about one of the q charges, and one of the Q charges.
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Figure 4: Problem 3: free-body diagram

We will call the force between adjacent Q and q charges FqQ, the force between two q charges Fqq,
the force between two Q charges FQQ, and finally, the tension in the strings is T . All four strings
must have the same tension, based on the symmetry of the system and Newton’s third law. Since we
know the distances between the charges (see above), we already know the electrostatic forces involved:
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Next, focus on one of the q charges. We will pick the uppermost one just to be concrete. As indicated
in the free body diagram above, there will be two repulsive FqQ forces from the two adjacent Q
charges, and these forces will be directed at an angle θ above the indicated x axis. The string tensions
will act opposite these two repulsive forces. At equilibrium, all forces must sum to zero. Summing
the forces along the x and y axes, we have:

on q charge:
∑

Fx = FqQ cos θ − FqQ cos θ + T cos θ − T cos θ = 0∑
Fy = 2FqQ sin θ − 2T sin θ + Fqq = 0

The forces in the x direction give us nothing useful, but those in the y direction do. Plugging in our
expressions for the forces:

2keQq

d2
sin θ − 2T sin θ +

keq
2

4d2 sin2 θ
= 0 (1)

This looks useful, but it is not enough. We must eliminate the tension T , and the only way to get
enough equations to do so is to also perform a force balance around one of the Q charges. Pick the
rightmost one:



on Q charge:
∑

Fx = FQQ + 2FqQ cos θ − 2T cos θ∑
Fy = FqQ sin θ − FqQ sin θ + T sin θ − T sin θ = 0

This time, the y force balance is useless, but the x force balance gives us another interesting equation.
Again, plugging in our expressions for the forces:
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Now: compare equations (1) and (2). We can solve both equations for 2T , and eliminate the tensions
entirely:
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Thus, as it must, the force-based approach yields the same answer as the energy-based approach.


