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Problem Set 3 Solutions

The solutions below are generally meant to be more precise and nitpicking than I am expecting you
to be, and I have tried in some cases to point out multiple ways to approach the same problem. In some
cases this means more advanced solutions that I don’t necessarily expect you to come up with, but that
some of you might find enlightening. You should not feel like you needed to have everything here to
receive full credit, and I certainly have not outlined every correct way to solve the problems . . . the idea
is that even if you found correct solutions for all the problems, you will probably still learn something.

1. Griffiths 2.8, 2.32 A solid sphere of radius R has a uniform charge density ρ and total charge Q. Derive
an expression for its total electric potential energy. (Suggestion: imagine that the sphere is constructed
by adding successive layers of concentric shells of charge dq=(4πr2 dr)ρ and use dU =V dq.)

There are in my opinion three reasonably straightforward ways to go about this problem, each with
its own merits. Below I will outline all three, you only needed to have one valid solution for full credit.

Method 1: use dU =V dq

We know that we can find the potential energy for any charge distribution by calculating the work
required to bring in each bit of charge in the distribution in from an infinite distance away. If we bring
a bit of charge dq in from infinitely far away (where the electric potential is zero) to a point P (~r), at
which the electric potential is V , work is required. The potential V results from all of the other bits
of charge already present; we bring in one dq at a time, and as we build up the charge distribution, we
calculate the new potential, and that new potential determines the work required to bring in the next
dq.

In the present case, we will build our sphere out of a collection of spherical shells of infinitesimal
thickness dr. We’ll start with a shell of radius 0, and work our way up to the last one of radius R. A
given shell of radius r will have a thickness dr, which gives it a surface area of 4πr2 and a volume of
(thickness)(surface area) = 4πr2 dr.

Once we’ve built the sphere up to a radius r, Gauss’ law tells us that the potential at the surface is just
that of a point charge of radius r:

V (r) =
keq(r)

r

Where q(r) is the charge built up so far, contained in a radius r. Bringing in the next spherical shell
of radius r + dr and charge dq will then require work to be done, in the amount V (r) dq, since we
are bringing a charge dq from a potential of 0 at an infinite distance to a potential V (r) at a distance
r. Thus, the little bit of work required to bring in the next shell is



−dW = dU = V (r) dq =
keq(r)

r
dq

Now, first we’ll want to know what q(r) is. If we have built the sphere to a radius r, then the charge
contained so far is just the charge density times the volume of a sphere of radius r:

q(r) =
4
3
πr3ρ

Next, we need to know what dq is, the charge contained in the next shell of charge we want to bring
in. In this case the charge is just the volume of the shell times the charge density:

dq = 4πr2 dr ρ

Putting that all together:

dU =
ke

4
3πr3ρ

r
4πr2 dr ρ =

16π2keρ
2

3
r4 dr

All we need to do now is integrate up all the small bits of work required from the starting radius r=0
to the final radius r=R:
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If we remember that the total charge on the sphere is Qtot = 4
3πR3ρ, we can rewrite a bit more simply:

U =
3keQ

2
tot

5R

Method 2: use dU = 1
2εoE

2 dVol

We have also learned that the potential energy of a charge distribution can be found by integrating its
electric field (squared) over all space:i

U =
1
2

�

everywhere

εoE
2 dVol =

1
8πke

�

everywhere

E2 dVol

If we have a sphere of charge of radius R, we can break all of space up into two regions: the space
outside of the sphere, where the field is ~Eout(r) at a distance r from the center of the sphere, and the
space inside the sphere, where the field is ~Ein(r). Therefore, we can break the integral above over all

iThe odd notation for volume dVol is to avoid confusion with electric potential without having to introduce more random
Greek symbols. Some people will use dτ to represent volume to this end.



space into two separate integrals over each of these regions, representing the energy contained in the
field outside the sphere, and that contained inside the sphere itself:

U = Uoutside + Uinside =
1

8πke

�

outside

E2
out dVol +

1
8πke

�

inside

E2
in dVol

Obviously, the region outside the sphere is defined as r > R, and the region inside the sphere is r ≤ R.
Just like in the last example, we can perform the volume integral over spherical shells of radius r and
width dr, letting the radius run from 0 → R inside the sphere, and R → ∞ outside. Our volume
elements are thus dVol =4πr2 dr, just as in the previous method.

What about the fields? Outside the sphere, the electric field is just that of a point charge (thanks to
Gauss’ law). Noting again that the total charge on the sphere is Qtot = 4

3πR3ρ,

~Eout(r) =
keQtot

r2
r̂ =

4πkeR
3ρ

3r2
r̂ (r > R)

Inside the sphere at a radius r, the electric field depends only on the amount of charge contained
within a sphere of radius r, q(r) = 4

3πr3ρ as noted above, which we derived previously from Gauss’
law:

~Ein(r) =
keq(r)

r2
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4πkerρ

3
r̂ (r ≤ R)

Now all we have to do is perform the integrals . . .
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Somehow, it is reassuring that these two different methods give us the same result . . . or at least it
should be!

Method 3: use dU = 1
2ρV dVol

As in the first method, we know that we can find the potential energy for any charge distribution
by calculating the work required to bring in each bit of charge in the distribution in from an infinite
distance away. For a collection of discrete point charges, we found:
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Recall that the factor 1/2 is so that we don’t count all pairs of charges twice. If we have a continuous
charge distribution - like a sphere - our sum becomes an integral:

U =
1
2

�

everywhere

ρV dVol

We still need the factor 1/2 to avoid double counting. Like the last example, we break this integral
over all space up into two separate ones: one over the volume inside the sphere, and one outside. Out-
side the sphere at a distance r > R, the charge density ρ is zero, so that integral is zero. All we have
to do is integrate the potential inside the sphere times the constant charge density over the volume of
the sphere! But wait . . . what is the potential inside the sphere?

The electric field inside such a sphere at a radius r we have already calculated, and it depended only on
the amount of charge contained in a sphere of radius r, q(r). That is because electric field from the
spherical shell of charge more distant than r canceled out. This is not true of the potential, because
the potential is a scalar, not a vector like the electric field, and there is no directionality that will cause
the potential to cancel from the charge more distant than r.

Thus, the potential inside the sphere will actually have two components at a distance r inside the
sphere: a term which looks like the potential of a point charge, due to the charge at a distance less
than r from the center, and one that looks like the potential due to the remaining shell of charge from
r to R. How do we calculate this mess? We can use the definition of the potential and the known
electric field inside the sphere.

~Ein(r) =
keQtotr

R3
r̂

VB − VA = −
B�

A

~E · d~l

In this case, we want to find the potential difference between a point at which we already know what
it is - such as on the surface of the sphere - and a point r inside the sphere. Then we can use the known
potential on the surface to find the unknown potential at r. We can most simply follow a radial path,
d~l= r̂ dr. Since the electric field is conservative, the path itself doesn’t matter, just the endpoints - so
we always choose a very convenient path.
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We know what the potential at the surface V (R) is, since outside the sphere the situation is identical
to that of a point charge. Thus,

V (r) = V (R) +
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Now we are ready! Once again, we integrate over our spherical volume by taking spherical shells of
radius r and width dr, giving a volume element dVol = 4πr2 dr. Noting that ρ is zero outside the
sphere,
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In the last line, we used Qtot = 4
3πR3ρ. One problem, three methods, and the same answer every

time. Just how it aught to be. Which method should you use? It is a matter of taste, and the
particular problem at hand. I tried to present the methods in order of what I thought was increasing
difficulty, your opinion may differ.

2. Griffiths 2.38, Jackson 2.5 An insulated spherical shell of radius a has a charge Q spread uniformly
over its surface. If the sphere is cut evenly into two hemispheres, what force is required to hold the two
hemispheres together?

There are also three reasonably simple solutions to this one. Once again, we’ll tackle them in order
of increasing pain.

Method 1: using mechanics + boundary conditions on ~E

First off, forget about the charge. If this were just a spherical pressure vessel, evacuated to some pres-
sure P relative to the outside atmosphere (at pressure Po), what force would be required to separate
the two hemispheres?

The pressure P on the surface of the two hemispheres is constant at all points, and the force F on
each element of surface area is directed along the radius of the hemispheres. The applied force along
the axis must balance the effective area over which the force acts. The effective area is not the whole
surface area of the sphere, but the projection of the actual surface area onto the plane dividing the
two hemispheres. That is, a circle of radius a. The force required to separate the spheres is just the
pressure difference between the inside and the outside of the vessel multiplied by the effective area:

F = (Po − P ) πa2
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Figure 1: A spherical pressure vessel.

Hopefully, this is familiar from your mechanics class. With this result in hand, the problem is much
easier. We derived in class that the force per unit area - which is just pressure - on a sheet of charge is
related to the surface charge density, or the electric fields on either side of the sheet of charge:

F

A
= P = 4πkeσ =

1
8πke

(
E2

2 − E2
1

)
Here E1 and E2 are the electric fields on either side of the sheet of charge. In the present case, our
“sheets" of charge are really hemispheres, so E1 and E2 represent the fields inside and outside the
sphere, respectively. From Gauss’ law, we know that inside the (unseparated) sphere, the electric field
is zero, while outside the sphere the electric field is the same as that of a point charge Q. Just as in the
case of a pressure vessel, the active area over which the electrostatic forces act is the projection of the
hemispheres’ area onto the plane separating them, or πa2. Thus,
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Method 2: using P = − dU
dV

You may not remember - or perhaps you were never told - but there is a very nice relationship between
pressure P , energy U , and volume V , which essentially equates pressure and energy density:

P = −dU

dV

You might have seen this in thermodynamics as dW =PdV . How do we use it? First, we have already
derived the potential energy of a spherical shell of charge of radius r:

U(r) =
keQ

2

r

What we want to do now is make the energy a function of volume rather than radius, noting that for
a sphere of radius r,

r = 3

√
3V

4π



And so

U(V ) =
keQ

2

2
3

√
4π

3V
=

keQ
2

2
3

√
4π

3
V −

1
3

We can now find the pressure by taking dU/dV :
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Finally, we know that the force corresponding to this pressure is F = PA, and from the previous ap-
proach we know the active area A is the projection of the hemispheres’ area onto the plane separating
them, or πr2.
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Our particular sphere has a radius a, so F = keQ2

8a2 as we found with the previous method.

Method 3: Brute force integration.

Unless you have a bit of familiarity with calculus in three dimensions, you probably want to skip this
one. In general we will not follow this sort of brute-force method, but I show it here as an example
of how to solve problems like this almost from scratch, the way you will probably have to do it in
PH331 or ECE340. So unless you are curious, go ahead and skip to the next problem.

Before we even try this, we should remind ourselves a little about spherical polar coordinates. This is
just a three-dimensional version of polar coordinates - instead of (r, θ) defining a point within a plane,
the coordinates (r, θ, ϕ) define a point in three dimensional space. Below you can see our conventions
for choosing the r, θ, and ϕ “axes."

dϕ

dθ

x

y

z

r

dA

dA = r2
sin θ dθ dϕ

θ

ϕ

• r is the length of the vector
• θ is the angle with the positive z-axis; 0 ≤ θ ≤ π

• ϕ is the angle with the x− z-plane; 0 ≤ ϕ ≤ 2π

• differential surface area on a sphere is
dA = r2 sin θ dθ dϕ, with n̂ = r̂

• differential volume is dV = r2 sin θdr dθ dϕ

Within what we would usually call the x − y plane, we can locate any point with coordinates (r, ϕ),
where r is radial distance from the origin as usual, and ϕ is the angle the radius makes with respect to
the x axis. We add to this is an angle θ to specify the inclination above the x − y plane toward the z
axis. In this system θ takes on values from 0 to π, and ϕ varies from 0 to 2π - to generate a sphere, we
need a full rotation in one plane, but only half in the second.

So, for example, if we want to calculate the surface area of a sphere, we can first find the area of



some tiny patch of the surface dA, defined by r, dθ, and dϕ, as shown above. If you remember your
geometry (e.g., the formula for arclength), you should be able to show that the area dA is given by
r2 sin θ dθ dϕ - one side of of the patch of area is r sin θ dϕ, the adjacent side is r dθ, and if dA is
small enough, we can treat it as a rectangle. The surface area of the whole sphere is then found by
integrating each angular coordinate over its whole range. We do not need to integrate the radius, since
that is constant for a sphere:

A =
�

dA =

π�

0

dθ

2π�

0

dϕ r2 sin θ =

π�

0

dθ 2πr2 sin θ = 2πr2 [− cos θ]2π
0 = 4πr2

A familiar result, no? Compare this to integrating thin spherical shells to find volume, as we did above.

Now, on to the real problem at hand. What we really want to figure out is the electric force on a tiny
patch of charge dA. In class, we derived that the force per unit area on a tiny sheet with charge density
σ and fields E1 on one side and E2 on the other is:

F

A
= σEavg =
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σ (E1 + E2)

dθ
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n̂

d!F cos θ
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For a spherical shell of charge, E1 and E2 represent the fields inside and outside the sphere, respec-
tively. From Gauss’ law, we know that inside the (unseparated) sphere, the electric field is zero, while
outside the sphere the electric field is the same as that of a point charge Q. By symmetry, the electric
field and thus the electric force) must point radially outward from the center of the sphere. This is
illustrated above for one hemisphere; note that the unit normal to dA is just n̂ = r̂, and r̂ makes an
angle θ with the z axis. Knowing the total charge Q on the sphere and its radius a, for a tiny patch of
area dA, the force dF must then be:

d~F = dF n̂ =
1
2
σ (E1 + E2) dA r̂ =

1
2
σE2 dA r̂ =

keQ
2

8πa4
dA r̂ =
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2

8πa4
a2 sin θ dθ dϕ r̂

In the last step we used σ = Q/4πa2. What is the force pushing this hemisphere away from the other
one? Based on the symmetry of the system, we see that only the ẑ component of the force d~F can
result in a net displacement of the two hemispheres. In other words, only the z component of the
force can do any work to separate the two hemispheres, and each bit dA is being pushed in the z

direction by a force d~F · ẑ = dF (r̂ · ẑ) = dF cos θ.

The total force acting on the entire hemisphere we can then find by integrating dF cos θ over ϕ and



θ. In order to cover the hemisphere, θ must run from 0 to π/2, and ϕ from 0 to 2π.ii
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Sometimes it is satisfying to solve these things from very basic principles, but as you can see above,
there are usually easier ways . . .
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3. Serway 24.71 A slab of insulating material, infinite in two of its
three dimensions, has a uniform positive charge density ρ, shown at
left. (a) Show that the magnitude of the electric field a distance x

from the center and inside the slab is E = ρx/ε0. (b) Suppose an
electron of charge −e and mass me can more freely within the slab.
It is released from rest at a distance x from the center. Show that the
electron exhibits simple harmonic motion with a frequency

f =
1
2π

√
ρe

meε0

Consider a cylindrical shaped Gaussian surface perpendicular to the yz plane, as shown below. One
circular face is in the yz plane, and the other is a distance x in the positive x̂ direction.

We know that for a thin slab of charge, the electric field must be perpendicular to the surface of the
slab, or along the x̂ direction in this case. Further, by symmetry the field must be zero exactly at the
center of the slab, where we have placed the left-most end cap. If we apply Gauss’ law to this surface,
the net flux is non-zero only through the rightmost end cap of the cylinder. Thus, if we call the area
of the cylinder’s end cap Aend cap,

�
~E · n̂ dA = EAend cap

The amount of charge contained in the Gaussian cylinder is just the charge density of the slab times
the volume of the cylinder, xAend cap, so

iiIf we let θ run over the full range of 0 to π, we would integrate over the whole sphere.
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EAend cap =
ρAend cap x

εo
=⇒ E =

ρx

εo

Fair enough. What is the force on an electron placed at a distance x? We know it is the electron’s
charge −e times the electric field at x, and if this is the only force acting, it must equal the electron’s
mass me times the resulting acceleration.

~F = −e~E =
−eρx

εo
x̂ = me~a

Thus, the acceleration must be in the x̂ direction, and it is proportional to the electron’s position
x. How do we show that simple harmonic motion results? We just did! Recall from mechanics that
simple harmonic motion occurs whenever we can show that a system’s acceleration are related by
some constant −ω2, viz., a = −ω2x.iii If this is true, then ω is the angular frequency of oscillation,
and ω = 2πf . Rewriting the equation above, dropping the now redundant vector notation,

a =
d2x

dt2
= − eρ

meεo
x

=⇒ ω =
√

eρ

meεo
and f =

1
2π

√
eρ

meεo

4. Serway 23.24 Consider an infinite number of identical charges (each of charge q) placed along the x

axis at distances a, 2a, 3a, 4a, . . . from the origin. (a) What is the electric field at the origin due to this
distribution? (b) What is the electric potential at the origin?

We have identical charges q placed at distances which are integer multiples of a from the origin. The
total electric field is the sum of each individual electric field from each individual charge. Since all
charges are along the x axis, their fields all point in the −x̂ direction, and we can simply add the
magnitudes.

iiiSomewhat more precisely, we want to show that the differential equation d2x/dt2 =−ω2x is obeyed, which has the simplest
physical solution x(t) = A cos (ωt + δ).



If we number these charges sequentially, starting from the closest one and continuing until the nth,
the magnitude of the electric fields from the first few charges can be calculated easily, and we begin to
notice a pattern:

E1 = −keq

a2

E2 = − keq

(2a)2
= −keq

4a2

E3 = − keq

(3a)2
= −keq

9a2

...

En = − keq

(na)2
= − keq

n2a2

The minus sign is to indicate that the field is in the −x̂ direction. Having noticed a pattern, we can
more easily represent the total electric field as an infinite sum, noting that the nth charge from the
origin is at a distance na, and all charges are identical:
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This infinite sum is convergent, and has the remarkably simple value of π2/6.iv The total electric field
is then
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What about the electric potential? The potential also obeys superposition, so our sum now looks like
this:
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This sum is known as the harmonic series. Sadly, this innocent-looking series diverges. The potential
is infinite, even though the field is finite, which means one important thing: such an arrangement of
charges could never be assembled, since it would take an infinite amount of energy!

5. Serway 24.68 Find the electric potential at an arbitrary point P (x, y, z) in the vicinity of a charged rod
of length L with linear charge density λ.

First, we note that Gauss’ law cannot be used easily, since the rod is of finite length - symmetry will
not really help us, since the field will vary strongly near the end points. We could find the electric
field at point P (similar to what you did in HW1) and then find its gradient, but that seems like a lot

ivThere are some very clever proofs of this, my favorite perhaps being the one using Fourier series and Parseval’s identity.
The first proof was due to Euler: http://en.wikipedia.org/wiki/Basel_problem

http://en.wikipedia.org/wiki/Basel_problem


of work. Best is just to brute force this one, it ends up working out fairly easily. Start with the figure
below:

y

x

O
L

dq = λ dx

!d

P(xo, yo, zo)

x

We place the rod along the x axis, with one end at the origin. We will only draw the x − y plane
here, but will consider distances in all three dimensions. If we consider some tiny slice of the rod dx,
it must contain a charge dq = λ dx if the charge density is uniform. What we want to do is find the
potential at point P due to this dq, and then integrate over all possible dq’s.

Let our arbitrary point P be at the coordinates (xo, yo, zo). For an arbitrary element dq at (x, 0, 0),
the position vector ~d and distance d from dq to point P is

~d = (xo − x) x̂ + yo ŷ + zo ẑ =⇒ d =
√

(xo − x)2 + y2
o + z2

o

Since our infinitesimal charge dq can be considered a point charge, the potential dV at point P due
dq is just

dV (xo, yo, zo) =
kedq

d
=
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The total potential at point P is then just integrating all of these dq, which means integrating dx over
the length of the rod from 0 to L:

V (xo, yo, zo) =
�

dV (xo, yo, zo) =

L�

0

keλ√
(xo − x)2 + y2

o + z2
o

dx

= keλ

[
ln
∣∣∣∣|xo − x|+

√
(xo − x)2 + y2

o + z2
o

∣∣∣∣]L

0

= keλ

[
ln
∣∣∣∣|xo − L|+

√
(xo − L)2 + y2

o + z2
o

∣∣∣∣− ln
∣∣∣xo +

√
x2

o + y2
o + z2

o

∣∣∣]

= keλ ln

∣∣∣∣∣∣ |xo − L|+
√

(xo − L)2 + y2
o + z2

o

xo +
√

x2
o + y2

o + z2
o

∣∣∣∣∣∣
In the limiting case that we are at P = (0, a, 0), we recover the result of one of the textbook’s example
problems (Ch. 25):



V (0, a, 0) = keλ ln

(
L +

√
L2 + a2

a

)
= ke

Q

L
ln

(
L +

√
L2 + a2

a

)

Optional: putting the result in a coordinate-free form. Now define |~ro| = ro =
√

x2
o + y2

o + z2
o , which

is just the distance from the origin to P . Next, define a vector ~L = L x̂ which points from one end of
the rod to the other, as well as its corresponding unit vector L̂ = ~L/|~L|2. With those definitions, we
notice that the vector from the right end of the rod to P can be written as~ro − ~L.

Now we can re-write the distances as vector differences. For example,
√

(xo − L)2 + y2
o + z2

o =

|~ro −~L|, and xo −L =
(
~ro − ~L

)
· L̂, and finally xo + ro =~ro · L̂ + |~ro|2. Why bother? Because now

we can write our answer in a coordinate-free form, which does not depend on our choice of origin,
coordinate system, or anything:

V = kλ ln

∣∣∣∣∣∣
(
~ro − ~L

)
· L̂ + |~ro − ~L|

~ro · L̂ + |~ro|2

∣∣∣∣∣∣
The potential depends only on the relative positions of the rod and P , and the angle between ~r and
~L, as we expect. (The angle basically tells us whether P is more along the rod’s axis, or more along a
perpendicular to its axis.)

6. Purcell 2.5 A sphere the size of a basketball is charged to a potential of −1000 V. About how many
extra electrons are on it, per cm2 of surface?

If the charge is spread evenly over the surface of a spherical object, like a basketball, then Gauss’ law
says we may treat the charge distribution as a point charge. Thus, we may consider the uniformly
charged basketball equivalent to a single point charge at the center of the basketball. A men’s regula-
tion basketball has a diameter of 9.39 in, and thus a radius of 0.12 m. We know then that the potential
at the surface of the basketball is −1000 V, and this potential results from an effective point charge q
at the center of the basketball, 0.12 m from the surface. Using the expression for the potential from a
point charge:

−1000 V =
keq

r
=

[
9× 109 N ·m2/C2

]
q

0.12 m
=⇒ q = −1.33× 10−8 C

This is the effective charge on the basketball. Given that one electron has −1.6× 10−19 C of charge,
this must correspond to:

(number of electrons) =
−1.33× 10−8 C

−1.6× 10−19 C/electron
= 8.33× 1010 electrons

If these electrons are spread out evenly over the surface, the electron density can be calculated from
the surface area of the basketball (remembering that the surface area of a sphere is 4πr2, and we were
asked to use cm2):



(density of electrons) =
8.33× 1010 electrons

4π (12 cm)2
≈ 4.6× 107 electrons/cm2

-q

+q

E

2a
θ

7. Serway 23.73 An electric dipole in a uniform electric field E

is displaced slightly from its equilibrium position, as shown at
left, where θ is small. The separation of the charges is 2a, and
the moment of inertia of the dipole is I . Assuming the dipole
is released from this position, show that its angular orientation
exhibits simple harmonic motion with a frequency

f =
1
2π

√
2qaE

I

Define the positive x axis to be in the direction of the electric field, and the positive y axis perpen-
dicular to it in the upward direction. This means the z axis points out of the page for a right-handed
coordinate system.

On the +q charge, there will be force F+ = qE along x̂, and on the −q charge, a force F− = −qE
(along−ŷ). Both of these forces will try to cause the dipole to rotate and orient itself along the electric
field; that is, both will result in a clockwise torque about the center of the dipole. The sum of these
torques must equal the dipole’s moment of inertia I times the resulting angular acceleration α. Let the
position of the +q charge be defined by a vector~r+ whose origin is at the dipole center, and similarly
~r− will give the position of the −q charge. We also define a unit vector r̂ pointing from the −q to the
+q charge. Finally, remember that a clockwise rotation defines a negative torque - this is the version
of the right-hand rule for torques.v

∑
~τ =

(
~r+ × ~F+

)
+
(
~r− × ~F−

)
= qEa r̂× x̂ + (−qE) (−r̂× x̂)

= qEa (−ẑ sin θ) + qEa (−ẑ sin θ) = −2qaE sin θ ẑ = I~α∑
|~τ | = −2qEa sin θ = I|~α|

We could have avoided the vector baggage right off the bat, if we just chose the resultant torque to be
negative based on the right-hand rule. In order to show simple harmonic motion, we need to show in
this case that α = −ω2θ. Recalling the definition of α, we have:

Iα = I
d2θ

dt2
= −2qEa sin θ

If the angle θ is small, we can approximate sin θ by the first term in its Taylor expansion (a “first-order”
approximation):

vWe have to pick the sign because ~τ , resulting from a cross-product, is a pseudovector.



Taylor expansion sin θ =
∞∑

n=0

(−1)n

(2n + 1)!
θ2n+1 = θ − θ3

3!
+

θ5

5!
− . . .

small θ : sin θ ≈ θ

Using this approximation,

I
d2θ

dt2
≈ −2qEaθ or

d2θ

dt2
≈ −2qEa

I
θ

This is our beloved differential equation for simple harmonic motion, viz., a =−ω2x, and thus for
small θ,

ω =

√
2qaE

I
or f =

1
2π

√
2qaE

I


