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Problem Set 5: Solutions

1. Serway 28.62 Two resistors R1 and R2 are in parallel with each other. Together they carry total current
I . (a) Determine the current in each resistor. (b) Prove that this division of the total current I between
the two resistors results in less power delivered to the combination than any other. It is a general principle
that current in a dc circuit distributes itself so that the total power delivered is a minimum.

a: Since the two resistors are in parallel, they will have the same voltage drop, but in general different
currents (unless R1 = R2, in which case the currents are the same). Let I1 and I2 be the currents in
resistors R1 and R2, respectively, with the total current then given by I =I1 + I2. Given the current
through each resistor, we can readily calculate the voltage drop on each, which again must be the same
for both resistors:

∆V1 = I1R1

∆V2 = I2R2

∆V1 = ∆V2 =⇒ I1R1 = I2R2

We can find the current in each resistor from the known total current I by noting that I = I1 + I2,
and thus I2 =I − I1

I1R1 = I2R2

I1R1 = (I − I1)R2

I1R1 + I1R2 = IR2

=⇒ I1 =
R2

R1 + R2
I =

[
1

R1
R2

+ 1

]
I

Thus, the fraction of the total current in first resistor depends on the ratio of the two resistors. The
larger resistor 2 is, the more current that will flow through the first resistor - not shocking! Given the
above expression for I1, we can easily find I2 from I2 =I − I1, which yields

I2 =
R1

R1 + R2
I =

[
1

R2
R1

+ 1

]
I

Our derivation of the currents in each resistor has so far only relied on conservation of energy (com-
ponents in parallel have the same voltage) and conservation of charge (I = I1 + I2), we have not
invoked any special “laws” about combining parallel resistors. In fact, that is what we have just de-
rived!

b: Now, what about the power then? We want to find the distribution of currents that results in
minimum power dissipation in the most general way, specifically not using the results of the previous



portion of this problem. We will only assume that resistors R1 and R2 carry currents I1 and I2,
respectively, and that these two currents add up to the total current, I = I1 + I2. In other words, we
assume conservation of charge, but do not even restrict ourselves by applying conservation of energy.
In this most general case, the total power dissipated is just the sum of the individual power dissipations
in the two resistors:

Ptot = P1 + P2 = I2
1R1 + I2

2R2 = I2
1R1 + (I − I1)

2
R2 = I2

1 (R1 + R2) + I2R2 − 2IR2I1

For the last part, we did invoke our conservation of charge equation (I = I1 + I2). What to do next?
We have now the total power Ptot in both resistors as a function of the current in R1. If we minimize
the total power with respect to I1, we will have found the value of I1 which leads to the minimum
power dissipation. Since I2 is then fixed by the total current I once we know I1, I2 = I − I1, this is
sufficient to establish the values of both I1 and I2 that lead to minimum power dissipation. Of course,
to find the minimum of Ptot for any value of I1, we need to take a derivativei . . .

dPtot

dI1
= 2I1 (R1 + R2)− 2IR2 = 0

=⇒ I1 =
R2

R1 + R2
I

Lo and behold, the minimum power dissipation occurs when the currents are distributed exactly as
we expect for parallel resistors. At this point, you can easily find I2 as well, given I2 = I − I1. The
general rule is that current in a dc circuit distributes itself such that the total power dissipation is
minimum, which we will not prove here.

Of course ... hold on a minute. We missed one small point: by finding dPtot
dI1

and setting it to zero,
we have certainly found an extreme value for Ptot. We did not prove whether it is a maximum or a
minimum however! This is important . . . so we should apply the second derivative test.
Recall briefly that after finding the extreme point of a function f(x) via df/dx|x=a= 0, one should
calculate d2f/dx2|x=a: if d2f/dx2|x=a< 0, you have a maximum, if d2f/dx2|x=a> 0 you have a
minimum, and if d2f/dx2|x=a= 0, the test basically wasted your time. Anyway:

d2Ptot

dI2
1

= 2 (R1 + R2) > 0

Since resistances are always positive, we have in fact found a minimum of Ptot. Sweet.

Don’t let that lull you into complacency, however: you need to apply the second derivative test to see
what you’ve really found, and not just take derivatives and set them to zero all willy-nilly.

2. Purcell 4.x Show that if a battery of fixed internal voltage ∆V and internal resistance Ri is connected
to a variable external resistance R the maximum power is delivered to the external resistor when Ri =R.

The circuit we are considering is just a series combination of the (ideal) internal voltage source ∆V , the

iKeep in mind that the total current I is fixed, so dI/dI1 = 0. And, yes we should technically be using partial derivatives
here (differentiating with respect to I1 while holding everything else constant), but since only I1 varies it is not really crucial.
Plus, I think that would be using math beyond the course prerequisites.



internal resistance Ri, and the external resistance R. Since all the elements are in series, the current is
the same in each, which we will call I . Applying Kirchhoff’s “loop" rule (i.e., conservation of energy),

∆V − IR− IRi = 0 =⇒ I =
∆V

R + Ri

The power delivered to the external resistor PR is just I2R:

PR = I2R =
(

∆V

R + Ri

)
R = (∆V )2

R

(R + Ri)
2

Similar to the last problem, we can maximize the power delivered to the resistor R by differentiating
the power with respect to R and setting the result equal to zero:

dPR

dR
=

d

dR

[
(∆V )2

R

(R + Ri)
2

]
= (∆V )2

[
1

(R + Ri)
2 +

−2R

(R + Ri)
3

]
= 0

=⇒ 1
(R + Ri)

2 =
2R

(R + Ri)
3

1 =
2R

R + Ri

R + Ri = 2R
=⇒ Ri = R

The power is indeed extremal when the external resistor matches the internal resistance of the battery.
Again, we apply the second derivative test to see whether this is a maximum or a minimum. First,
let’s find the second derivative, and simplify it as much as possible.

d2PR

dR2
=

d

dR

[
(∆V )2

(
1

(R + Ri)
2 −

2R

(R + Ri)
3

)]

= (∆V )2
[

−2
(R + Ri)

3 −
2

(R + Ri)
3 +

6R

(R + Ri)
4

]

= (∆V )2
[

−4
(R + Ri)

3 +
6R

(R + Ri)
4

]

=
(∆V )2

(R + Ri)
3

[
6R

R + Ri
− 4
]

We are concerned with the value of the second derivative at the point R=Ri, the extreme point:

d2PR

dR2

∣∣∣∣
R=Ri

=
(∆V )2

(R + R)3

[
6R

R + R
− 4
]

=
(∆V )2

8R3
[3− 4] = − (∆V )2

8R3
< 0

The second derivative is always negative, so we have found a maximum: the power delivered to the
external resistor is maximum when R=Ri.

3. Purcell 4.x A black box with three terminals, a, b, and c, contains nothing but three resistors and



connecting wire. Measuring the resistance between pairs of terminals, you measure Rab = 30 Ω, Rac =
60 Ω, and Rbc =70 Ω. Show that the box could be either of those below.

a c

b

a c

b

OR
34

170

85 10 50

20

First, consider the box on the left side. Measuring between points a b (with point c unconnected),
we would find a 34 Ω resistor in parallel with a series combination of 85 Ω and 170 Ω. The series
combination of 85 Ω and 170 Ω just gives 255 Ω, and that in parallel with 34 Ω gives

Rab =
(34 Ω) (255 Ω)
34 Ω + 255 Ω

= 30 Ω

Similarly, we can find Rbc =70Ω and Rac =60Ω.

For the box on the right, if we connect only points a and b then the 50 Ω resistor does nothing - it has
one end disconnected. Thus, Rab =30Ω, and similarly Rbc =70Ω, Rac =60Ω. Since a measurement
of the resistance between any two terminals yields the same result, the two boxes are indistinguishable.

Establishing the equivalence of these two configurations is more generally known as a “Y-∆” transfor-
mation: http://en.wikipedia.org/wiki/Y-%CE%94_transform

4. Purcell 4.8 A copper wire 1 km long is connected across a 6 V battery. The resistivity of the copper is
1.7×10−8 Ω m, and the number of conduction electrons per cubic meter is 8×1028. (a) What is the drift
velocity of the conduction electrons under these circumstances? (b) How long does it take an electron to
drift once around the circuit?

Given a conductor of cross-sectional area A and length L, the current will be

I =
V

R
=

V A

ρL

and the current density

J =
I

A
=

V

ρL
.

The current density is also the charge density n times the drift speed vd, and the charge density is ne
where n is the number of electrons per unit volume:

vd =
I

nqA
=

J

ne
=

V

ρLne

http://en.wikipedia.org/wiki/Y-%CE%94_transform


vd =
6 V

(1.7× 10−8 Ω m)(103 m)(8× 1028 m−3)(1.6× 10−19 C)
= 2.8× 10−5 m/s

Given the velocity vd and the length of the conductor L, it is easy to figure out how long the journey
will take:

t =
L

vd
=

103 m
2.8× 10−5 m/s

= 3.6× 107s ' 1 year

5. Each of the twelve edges of the cube is a resistor R. What is the resistance between two opposite corners?

Solutions to this one are all over the internet. For example:
http://www.physics.ucsb.edu/~lecturedemonstrations/Composer/Pages/64.42.html

The following figures might help you visualize what is going on:

1

2

3

4

5

6

7

8I

I 1

2
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4

5

6

7
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I

I/3

I/3

I/3

I/6

I/6

I/6

I/6

I/6
I/6

I/3

I/3
I/3

Take any corner, and let a current I enters at that node. It then has a choice of three directions to go
along the cube edges. Each path has an identical resistance, so the current must split up evenly with
I/3 through each. Likewise, the current exiting the node on the opposite corner comes from three
resistors, each with a current I/3. This leaves 6 resistors in the middle that must share the whole
current I . Because each of those is also identical, they must each have current I/6.

The voltage drop between the two corner nodes can be found by following (any) path from one to the
other and adding up the individual voltage drops. The most direct path has us going first through a
resistor R carrying I/3, then through a resistor R carrying I/6, and finally exiting through a resistor
R carrying I/3. Thus:

∆V =
I

3
R +

I

6
R +

I

3
R =

5
6
RI

Req =
∆V

I
=

5
6
R

You can find the solutions for all Platonic solids and all node spacings here:

http://cs.nyu.edu/%7Egottlieb/tr/2008-may-jun-2.pdf

http://www.physics.ucsb.edu/~lecturedemonstrations/Composer/Pages/64.42.html
http://cs.nyu.edu/%7Egottlieb/tr/2008-may-jun-2.pdf


6. Purcell 4.7 A laminated conductor was made by depositing, alternately, layers of silver 10 nm thick
and layers of tin 20 nm thick. The composite material, consdiered on a larger scale, may be considered a
homogeneous but anisotropic material with electrical conductivity σ⊥ for currents perpendicular to the
planes of the layers, and a different conductivity σ|| for currents parallel to that plane. Given that the
conductivity of silver is 7.2 times that of tin, find the ratio σ⊥/σ||.

First, let us sketch out the situation given:

t1
t2

a

b

We are not told how many layers of each type we have, and it will not matter in the end. For now,
however, assume we have n1 layers of tin of conductivity σ1 and n2 layers of silver of conductivity
σ2. Instead of conductivity, we can equivalently use resistivity % when it is more convenient, with
%=1/σ. We will also say the tin layers have thickness t1, and the silver layers thickness t2. The total
thickness of our entire multi-layer stack is then ttot =n1t1 + n2t2.

First, consider the perpendicular conductivity, the case where we pass current upward through the
stack, perpendicular to the planes of the layers. When a current is flowing, electrons pass through
each layer in sequence, and we can consider the stack of layers to be resistors in series. If the layers
have an area of A = ab (see the Figure above) and a thickness t1 or t2, we can readily calculate the
resistance presented by a single tin or silver layer with current perpendicular to the layers:

R1,⊥ =
%1t1
A

=
t1

σ1A

R2,⊥ =
%2t2
A

=
t2

σ2A

For reasons that should become apparent below, it will be convenient in this case to work with the
resistivity rather than the conductivity, and invert the result later. The total resistance of the stack is
then just a series combination of n1 resistors of value R1 and n2 resistors of value R2:

Rtot,⊥ = n1R1,⊥ + n2R2,⊥ =
1
A

(ρ1t1n1 + ρ2t2n2)

If we measure the whole stack and find this resistance, we can define an effective resistivity or conduc-
tivity for the whole stack in terms of the total resistance and total thickness of the multilayer. If the
resistivity of the whole stack for perpendicular currents is %⊥ = 1/σ⊥, then:



Rtot,⊥ =
%⊥ttot

A
=⇒ %⊥ =

ARtot,⊥

ttot

Now we just need to plug in what we know and simplify . . .

%⊥ =
ARtot,⊥

ttot
=

A

ttot

[
1
A

(ρ1t1n1 + %2t2n2)
]

%⊥ =
%1t1n1 + %2t2n2

ttot
=

%1t1n1 + ρ2t2n2

n1t1 + n2t2

We can simplify this somewhat if we realize that we have the same number of silver and tin layers -
we are told that the layers are deposited alternatingly. If we let n1 =n2≡nbi, meaning we count the
number of bilayers instead, then ttot =nbi (t1 + t2), and

%⊥ =
nbi%1t1 + nbi%2t2

nbit1 + nbit2
=

%1t1 + %2t2
t1 + t2

This is a nice, simple result: for current perpendicular to the planes, the effective resistivity is just
a thickness-weighted average of the resistivities of the individual layers. Given the resistivity in the
perpendicular case, we can now find the conductivity σ⊥

σ⊥ =
1

%⊥
=

t1 + t2
%1t1 + %2t2

=
t1 + t2
t1
σ1

+ t2
σ2

=
σ1σ2 (t1 + t2)
σ2t1 + σ1t2

As a consistency check, we can take a couple of limiting cases. First, let σ1 =σ2≡σ. This corresponds
to a homogeneous lump of a single material, and we find σ⊥=σ, as expected. Next, we can check for
σ1 = 0. In this case, one layer is not conducting at all, and since the layers are in series, this means
no current flows through the stack at all, and σ⊥=0 as expected. Finally, we notice that the number
of bilayers is irrelevant. Since the layers do not affect each other in our simple model of conduction,
there is no reason to expect otherwise. So far so good. What other limiting cases can you check?

Next, let us consider current flowing parallel to the plane of the layers, from (for example) left to right
in the figure above. Now the stack looks like many parallel resistors. A single tin layer of thickness
t1 and in-plane dimensions a and b now presents a resistance

R1,|| =
%1a

t1b
=

a

t1bσ1

Similarly, each silver layer presents a resistance

R2,|| =
%2a

t2b
=

a

t2bσ2

One bilayer of silver and tin means a parallel combination of these two resistances:

1
Rbi,||

=
1

R1,||
+

1
R2,||

=
b

a
(t1σ1 + t2σ2)

If we have nbi bilayers, then the total equivalent resistance is easily found:



1
Rtot,||

= nbi
1

Rbi,||
= nbi

b

a
(t1σ1 + t2σ2)

Given the total resistance, we can now calculate the conductivity directly (in this case, first finding the
resistivity does not save us any algebra), noting that the length of the whole stack along the direction
of the current is just a, and the cross-sectional area is bttot =bnbi (t1 + t2):

σ|| =
1
%||

=
a

nbi (t1 + t2) bRtot,||
=

a

nbi (t1 + t2) b

(
b

a

)
nbi (t1σ1 + t2σ2) =

t1σ1 + t2σ2

t1 + t2

Again, a sensible result: the effective conductivity for current parallel to the planes is just a thickness-
weighted average of the conductivities of the individual layers. Again, you can convince yourself with
a couple of limiting cases that this result makes some sense.

Now that we have both parallel and perpendicular conductivities, we can easily find the anisotropy
σ⊥/σ||.

σ⊥/σ|| =
%||

%⊥
=

σ1σ2 (t1 + t2)
σ2t1 + σ1t2

t1 + t2
σ1t1 + σ2t2

=
σ1σ2 (t1 + t2)

2

(t1σ1 + t2σ2) (t1σ2 + t2σ1)

Finally, we are given that the conductivity of silver is 7.2 times that of tin, and the tin layers’ thickness
is twice that of the silver. Thus, t1 = 2t2 and σ2 = 7.2σ1. The actual values and units do not mat-
ter, as this is a dimensionless ratio (you should verify this fact . . . ), and you should find σ⊥/σ||≈0.457.

And, once again, you can check that for σ1 =σ2, we have σ⊥/σ||=1, as it must if both materials are
the same.


