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Problem Set 6: Solutions

1. Serway 29.55 Protons having a kinetic energy of 5.00 MeV are moving in the positive x direction and
enter a magnetic field ~B=0.0500 k̂ T directed out of the plane of the page and extending from x=0 to
x=1.00 m, as shown below. (a) Calculate the y component of the protons’ momentum as they leave the
magnetic field. (b) Find the angle α between the initial velocity vector after the beam emerges from the
field. Note that 1 eV=1.60× 10−19 J.
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Figure 1: Problem 1

First of all, we know that once the proton enters the region of magnetic field it will follow a circular
path of radius r, and once it leaves the region it will once again move in a straight line path, tangential
to the circular path in the field region. We will need to use some geometry to relate α to the given
distance x and the radius of the circular path r. Then we will determine the radius of the circular path
in terms of the known kinetic energy, and we will be good to go . . . Refer to the figure below:
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Figure 2: Problem 1 Solution

The path of the protons in the region of magnetic field is circular, and described by a radius r. The
protons will move through the region of magnetic field across its lateral distance d, and this will define
an angle α, carving out an arc of a circle of radius r. We can define a right triangle by the center of



the circle defining the path in the magnetic field region, the point at which the protons enter the field,
and the point at which they leave. The angle at which the protons leave the field with respect to the
horizontal is then β=α based on the geometry of the figure above. Once we know r, given d, we can
find α by noting sinα=d/r.

The radius of the circular path of the protons can be found by noting that the centripetal force
(keeping them in a circular path) must be provided by the magnetic force. Note that a proton has
charge e and mass mp, and let the proton’s velocity be v. Also recall that magnetic forces do no work,
so the protons’ velocity will not change in magnitude after passing through the region of magnetic
field. Since the motion of the particle is always at a right angle with respect to the field, we can just
deal in magnitudes.

Fcentr =
mpv

2

r
= FB = evB sin θBv = evB

=⇒ r =
mpv

eB
=

p

eB

Here p is the magnitude of the protons’ momentum. Now we have the radius of the path in terms
of the field, the charge on a proton, and the protons’ momentum. We are given the protons’ kinetic
energy K, which is related to its momentum by K =p2/2mp. Thus,

r =
p

eB
=

√
2mpK

eB
≈ 6.46 m

Remember that 1 eV=1.6× 10−19 J to make the units come out properly. Given the radius r, we can
now find the angle α:

sinα =
d

r
=⇒ α = sin−1 d

r
≈ 8.9◦

Now, since the magnetic force does no work, the protons’ momentum does not change in magni-
tude, so the initial and final momentum are the same. The vertical (y) component of the protons’
momentum can thus be easily found: py =p sinα

py = p sinα =
√

2mpK sinα ≈ 8.0× 10−21 kg ·m/s

2. Serway 29.67 Consider an electron orbiting a proton and maintained in a fixed circular path of radius
R=5.29 × 10−11 m by the Coulomb force. Treating the orbiting charge as a current loop, calculate the
resulting torque when the system is in a magnetic field of 0.400 T directed perpendicular to the magnetic
moment of the electron.

First, need to know the current that corresponds to one orbiting electron. From the current I ,
magnetic field B, and the orbital radius R we can find the torque. An electron in a circular orbit of
radius R has a period of T = 2πR/v, where v it he electron’s velocity. If a single electron charge −e
orbits once every T seconds, then the current is by definition

I =
∆q

∆t
=
−e

T
=
−ev

2πR



We can find the velocity from the condition for circular motion. The only force present (that we
know of) is the electric force, which must then provide the centripetal force on the electron. The
electric force is just that of two point charges e and −e separated by a distance R.

Fcentr − FE =
mev

2

r
− −kee

2

R2
= 0 =⇒ v =

√
kee2

meR

We can now substitute this in our expression for current above:

I =
−ev

2πR
=

−e

2πR

√
kee2

meR
=
−e2

2π

√
ke

meR3

Finally, since the magnetic field is perpendicular to the electron’s magnetic moment, the magnitude
of the torque is given by τ = IAB where A is the area of the “current loop" formed by the orbiting
electron, A=πR2. Thus,

τ = IAB =
−e2

2π

√
ke

meR3
πR2B = −1

2
e2B

√
keR

me
≈ 3.7× 10−24 N ·m

The negative sign reminds us that current is the direction that positive charge flows, and thus the
direction of the torque is given by the right hand rule consistent with the current, which is opposite
the direction that the electron orbits.

3. Ohanian 29.5 A wire lying along the x axis carries a current of 30 A in the +x direction. A proton at
~r= 2.5 ŷ has instantaneous velocity ~v = 2.0 x̂ − 3.0 ŷ + 4.0 ẑ, where ~r is in meters and ~v in meters per
second. What is the instantaneous magnetic force on this proton?

If the current flows along the x̂ direction, and the proton is directly above the wire in the ŷ direction,
then the magnetic field must be pointing along the ẑ direction at the proton’s position. Thus, the
magnetic field at the proton’s position~r is given by

~B =
µoI

2πr
ẑ ≡ Bz ẑ

Finding the magnetic force is now just a matter of calculating the cross product ~v×~B and multiplying
by the proton’s charge e. First, the cross product:

~v × ~B = det

∣∣∣∣∣∣
x̂ ŷ ẑ
vx vy vz

Bx By Bz

∣∣∣∣∣∣ = det

∣∣∣∣∣∣
x̂ ŷ ẑ

2 m/s −3 m/s 4 m/s
0 0 Bz

∣∣∣∣∣∣ = −3Bz x̂− 2Bz ŷ m/s

Thus, the magnetic force is

~FB = q~v × ~B = −3eBz x̂− 2eBz ŷ m/s ≈
(
−3.84× 10−25

)
(3 x̂ + 2 ŷ) N

If you note that 1 T = 1 kg/s2 · A, you should be able to make the units come out properly. For



completion, the magnitude of the force is then

|~FB | =
(
−3.84× 10−25

) √
32 + 22 ≈ 1.38× 10−24 N

4. Ohanian 29.19 The electric field of a long, straight line of charge with λ coulombs per meter is

E =
2keλ

r

where r is the distance from the wire. Suppose we move this line of charge parallel to itself at speed
v. (a) The moving line of charge constitutes an electric current. What is the magnitude of this current?
(b) What is the magnitude of the magnetic field produced by this current? (c) Show that the magnitude
of the magnetic field is proportional to the magnitude of the electric field, and find the constant of
proportionality.

The current can be found by thinking about how much charge passes through a given region of space
per unit time. If we were standing next to the wire, in a time ∆t, the length of wire that passes by us
would be v∆t. The corresponding charge is then ∆q=λv∆t, and thus the current is

I =
∆q

∆t
=

λv∆t

∆t
= λv

From the current, we can easily find the magnetic field a distance r from the wire.

B =
µoI

2πr
=

µoλv

2πr

If the wire were sitting still (or we were traveling parallel to it at the same velocity v), it would produce
the electric field given above. Rearranging the given expression, we can relate λ and E, λ=Er/2ke.
Substituting this in our expression for the magnetic field,

B =
µoλv

2πr
=

µoErv

4πker
= µoεovE

For the last step, we noted that εo =1/4πke.

5. Purcell 7.14 A metal crossbar of mass m slides without friction on two long parallel rails a distance
b apart. A resistor R is connected across the rails at one end; compared with R, the resistance of the
bar and rails is negligible. There is a uniform field ~B perpendicular to the plane of the figure. At time
t=0, the crossbar is given a velocity vo toward the right. What happens then? (a) Does the rod ever stop
moving? If so, when? (b) How far does it go? (c) How about conservation of energy? Hint: first find the
acceleration, and make use of an instantaneous balance of power.
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Figure 3: Problem 5

The moving rod forms a closed loop with the rails, and once the rod starts moving, the area of this
loop increases with time. With a constant magnetic field, this means that the magnetic flux is increas-
ing with time, and therefore there must be an induced voltage. Let the position of the rod be x, with
the x̂ direction being to the right, and the ŷ direction upward. This means the magnetic field points
in the −ẑ direction, giving in a magnitude −B. At time t=0, we will say the rod has velocity vo and
position xo. For any time t, we will just call the velocity v and position x, since we don’t know what
they are yet.

The induced voltage can be found from the magnetic flux through the loop, which is itself is easily
found, since the magnetic field is constant and everywhere perpendicular to the plane of the loop. We
only need the area of the loop. If the width of the loop is b, and the position of the rod is x, the area
is just bx, and that is enough to find the flux:

ΦB =
�

loop

~B · d~A = B

�

loop

d~A = −BA = −Bxb

The induced voltage is found from the time variation of the flux via Faraday’s law. The induced
voltage - which is now applied to the resistor - will lead to a counterclockwise current in the loop,
since it wants to stop the increase in flux by creating a magnetic field opposing the external magnetic
field.

∆V = −dΦB

dt
= Bb

dx

dt
= Bbv = IR

The presence of a current in the conducting rod will lead to a magnetic force. Since the field is into
the page (−ẑ direction), and the current is flowing up through through the rod (ŷ direction), the force
must be in the ŷ direction.

~FB = I~L× ~B = IbB ŷ × (−ẑ) = −IbB x̂ = −B2b2v

R
= ma

Recall that the direction of ~L is the same as the direction of the current. Since the magnetic force is
the only force acting on the rod (in the absence of friction), it must also give the acceleration of the
rod, as indicted in the last step. Incidentally, we could have gotten here much more quickly with a
little intuition. If we recognize that there must be a current flowing in the resistor due to the induced
voltage caused by the motion of the rod, then we know there is power dissipated in the resistor. This
power must be the same as that supplied to the rod. The mechanical power is ~F ·~v, and the electrical
power is I2R. Conservation of energy requires that these two powers be equal, which along with the
motional voltage leads directly to the equation above.



Anyway: now we have a small equation relating v and its rate of change, dv/dt=a. We can solve it by
separation of variables, which is totally cool since none of our quantities are zero. Dividing by zero
is not cool.

−B2b2v

R
= m

dv

dt
mR

B2b2

dv

v
= −dt

Now we’ve got something we can integrate. Our starting condition is velocity vo at time t == 0,
going until some later time t where the velocity is v.

v�

vo

mR

B2b2

dv

v
=

t�

0

−dt

mR

B2b2
ln v

∣∣∣∣v
vo

= −t

∣∣∣∣t
0

mR

B2b2
ln

v

vo
= −t

=⇒ v = voe
−t/τ with τ =

mR

B2b2

The velocity is an exponentially decreasing function of time, which means it never stops moving - the
velocity approaches, but does not reach, zero. The rod will also approach a final target displacement
in spite of this fact, which we can find readily by integrating the velocity.

∆x =

∞�

o

v dt =

∞�

o

voe
−t/τ = vo

(
−τe−t/τ

) ∣∣∣∣∞
o

= voτ =
mRvo

B2b2

Once again, if you note that 1 T = 1 kg/s2 · A and 1 V · 1 A = 1 W, you should be able to make the
units come out correctly.

Finally, we can calculate the total electrical energy expended. The electrical power dissipated in the
resistor is P = dU/dt = I2R, so the tiny bit of potential energy dU expended in a time dt is dU =
I2R dt. We can integrate over all times to find the total potential energy.

U =

∞�

0

I2R dt =

∞�

0

(
Bbv

R

)2

R dt =
B2b2

R

∞�

0

v2 dt

=
B2b2v2

o

R

∞�

0

e−2t/τ dt =
B2b2v2

o

R

(
−τ

2
e−2t/τ

) ∣∣∣∣∞
0

=
B2b2v2

o

R

(
mR

2B2b2

)

=
1
2
mv2

0

As we would expect from conservation of energy, all of the initial kinetic energy of the conducting
bar ends up dissipated in the resistor.



6. Serway 29.66 A uniform magnetic field of magnitude 0.150 T is directed along the positive x axis. A
positron (a positively-charged electron) moving at 5.00 × 106 m/s enters the field along a direction that
makes an angle of 85◦ with the x axis. The motion of the particle is expected to be a helix in this case.
Calculate the pitch p and radius r of the trajectory.
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65. A cyclotron is sometimes used for carbon dating, as
described in Chapter 44. Carbon-14 and carbon-12 ions
are obtained from a sample of the material to be dated,
and accelerated in the cyclotron. If the cyclotron has a
magnetic field of magnitude 2.40 T, what is the difference
in cyclotron frequencies for the two ions?

66. A uniform magnetic field of magnitude 0.150 T is directed
along the positive x axis. A positron moving at 5.00 !
106 m/s enters the field along a direction that makes an
angle of 85.0° with the x axis (Fig. P29.66). The motion of
the particle is expected to be a helix, as described in
Section 29.4. Calculate (a) the pitch p and (b) the radius r
of the trajectory.

70. Table P29.70 shows measurements of a Hall voltage
and corresponding magnetic field for a probe used to
measure magnetic fields. (a) Plot these data, and deduce a
relationship between the two variables. (b) If the measure-
ments were taken with a current of 0.200 A and the sample
is made from a material having a charge-carrier density of
1.00 ! 1026/m3, what is the thickness of the sample?
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Figure P29.66

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

θ

θ

x

'

Figure P29.69

A+

To voltmeter

Blood
flow

Electrodes B–

S

Artery

N

Figure P29.71

Consider an electron orbiting a proton and maintained in
a fixed circular path of radius R " 5.29 ! 10#11 m by the
Coulomb force. Treating the orbiting charge as a current
loop, calculate the resulting torque when the system is in a
magnetic field of 0.400 T directed perpendicular to the
magnetic moment of the electron.

68. A singly charged ion completes five revolutions in a uni-
form magnetic field of magnitude 5.00 ! 10#2 T in
1.50 ms. Calculate the mass of the ion in kilograms.

69. A proton moving in the plane of the page has a kinetic
energy of 6.00 MeV. A magnetic field of magnitude
B " 1.00 T is directed into the page. The proton enters
the magnetic field with its velocity vector at an angle
$ " 45.0° to the linear boundary of the field as shown in
Figure P29.69. (a) Find x, the distance from the
point of entry to where the proton will leave the field.
(b) Determine $%, the angle between the boundary and
the proton’s velocity vector as it leaves the field.

67.

!VH ("V) B (T)

0 0.00
11 0.10
19 0.20
28 0.30
42 0.40
50 0.50
61 0.60
68 0.70
79 0.80
90 0.90

102 1.00

Table P29.70

71. A heart surgeon monitors the flow rate of blood through
an artery using an electromagnetic flowmeter (Fig.
P29.71). Electrodes A and B make contact with the outer
surface of the blood vessel, which has interior diameter
3.00 mm. (a) For a magnetic field magnitude of 0.040 0 T,
an emf of 160 &V appears between the electrodes. Calcu-
late the speed of the blood. (b) Verify that electrode A is
positive, as shown. Does the sign of the emf depend on
whether the mobile ions in the blood are predominantly
positively or negatively charged? Explain.

72. As shown in Figure P29.72, a particle of mass m having
positive charge q is initially traveling with velocity v ĵ. At
the origin of coordinates it enters a region between y " 0
and y " h containing a uniform magnetic field B k̂
directed perpendicularly out of the page. (a) What is the
critical value of v such that the particle just reaches y " h?

Figure 4: Problem 6

The first thing to realize is that a helix is basically a curve described by circular motion in one plane,
in this case the y − z plane, and linear motion along the perpendicular direction, in this case the x
axis. A helix of circular radius a and pitch p can be described parametrically by

x(t) =
pt

2π
y(t) = a cos t

z(t) = a sin t

As we can see, the motion in the y − z plane obeys y2 + z2 =a2, describing a circle of radius a, and
along the x axis we just have constant velocity motion. Since the x, y, and z motions are uncoupled
(e.g., the equation for x(t) has no y’s or z’s in it), things are in fact pretty simple.

The circular motion comes from the component of the velocity perpendicular to the magnetic field,
the component of velocity lying in the y − z plane, which we will call v⊥. The pitch is just how far
forward along the x axis the particle moves in one period of circular motion T . Thus, if the velocity
along the x axis is vx,

p = vxT = (v cos 85◦) T

We have already discovered that the period and radius of circular motion for a particle in a mag-
netic field does not depend on the particle’s velocity, it only matters that there is always a velocity
component perpendicular to the magnetic field

T =
2πm

qB
and r =

mv⊥
qB

Putting everything together,



p =
2πmv

Bq
cos 85◦ ≈ 1.04× 10−4 m

r =
mv

qB
sin 85◦ ≈ 1.89× 10−4 m

By the way, here is an interesting tidbit from MathWorld:i

A helix, sometimes also called a coil, is a curve for which the tangent makes a constant
angle with a fixed line. The shortest path between two points on a cylinder (one not
directly above the other) is a fractional turn of a helix, as can be seen by cutting the
cylinder along one of its sides, flattening it out, and noting that a straight line connecting
the points becomes helical upon re-wrapping. It is for this reason that squirrels chasing
one another up and around tree trunks follow helical paths.

ihttp://mathworld.wolfram.com/Helix.html

http://mathworld.wolfram.com/Helix.html

