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Problem Set 8: Solutions

1. (Purcell 7.22) A thin ring of radius a carries a static charge q. This ring is in a magnetic field of strength
Bo, parallel to the ring’s axis, and is supported so that it is free to rotate about that axis. If the field is
switched off, how much angular momentum will be added to the ring? If the ring has mass m, show that
it will acquire an angular velocity ω=qBo/2m.

It is not so clear, right off the bat, why the ring should start to rotate in the first place. Where
can the angular momentum come from? The key is to recognize that time-varying magnetic field will
give rise to a circulating electric field, which will cause a torque on the ring. One step at a time though!

At the instant the field is switched off, the magnetic flux through the loop changes from ΦB =Boπa2

to zero. The fact that the flux changes in time leads to an induced voltage around the ring, by Faraday’s
law:

∂ΦB

∂t
= −∆V =

�
ring

~E · d~l

If there is an induced voltage around the ring, then there must be an electric field as well, since the
integral of ~E · d~l around the loop is nonzero. What is the direction of the electric field? If the original
B field was constant along the ring’s axis, then the electric field resulting from its disappearance must
be circulating. If the ring were conducting - and we did not say that it is - the change in magnetic flux
would create induced currents circulating in such a way to stop the decrease in flux. A circulating
current in the ring could only be caused by an electric field varying tangentially along the ring, i.e., a
circulating electric field. The situation is the same whether the ring is conducting or not, in that the
electric field will circulate around the axis of the ring.
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Figure 1: Problem 1: If one field is ‘straight,’ the other circulates.

The change in magnetic flux produces an electric field tangent to the ring everywhere. This tangential
electric field is what will give rise to a torque. Each tiny element of the ring dl will feel an electric field



E, and thus an electric force Fe in the tangential direction. Over the whole ring, adding up many tiny
segments, there will be no net force, but there will be a net torque about the z axis.
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Figure 2: Problem 1: a tiny segment of the ring.

The ring of radius a has a total charge q spread out uniformly. Let us define a linear charge density
λ= q/2πa. Any tiny element dl of the ring then has a charge dq =λdl. The electric field E will give
rise to an electric force on each segment, also in the tangential direction:

d~Fe = dq ~E = λ dlE θ̂

On any little segment, we can now readily find the torque, since the electric force acts at a right angle
to the radial direction. Remember that the ring is supported at its center point, which means the
electric force acts over a distance a from the center of the circle to its rim.

d~τ = ~a× d~Fe = a r̂ dlE θ̂ = λa dl E
(
r̂× θ̂

)
= λa E dl ẑ

The torque is in the z direction, consistent with the right-hand rule. Once we know the torque on a
small element dl, we can easily integrate to find the torque on the whole ring:

~τ =
�

ring
d~τ =

�
λa E dl ẑ

Now we should notice two things: first, that the radius r is constant, and can be taken out of the
integral. Second, since ~E and d~l are parallel everywhere, the integral of E dl around the loop is
nothing more than the potential difference around the ring ∆V !

~τ = λa

�
E dlẑ = λa∆V ẑ =

( q

2πa

)
a∆V ẑ =

(
q∆V

2π

)
ẑ

The torque on the ring is simply proportional to the induced voltage, which is in turn proportional
to the change in magnetic flux. We will drop the vector notation now, since we have the directions of
everything straight at this point.

τ =
(

q∆V

2π

)
= −

( q

2π

) dΦB

dt

Of course, what is torque but the time rate of change of angular momentum . . .



dL

dt
= −

( q

2π

) dΦB

dt

Now integrate both sides. Let the limits of integration be the state i, just before the field Bo is switched
off, and the state f just after the field has been switched off.

� f

i

dL = − q

2π

� f

i

dΦB =⇒ Lf − Li =
q

2π
(ΦB,i − ΦB,f )

Just before the field is switched off, we have no net angular moment, so Li =0, and just after the field
is switched off, we have ΦB,f =0. Since we know the initial magnetic flux as well,

Lf =
q

2π

(
Boπa2

)
=

1
2
qa2Bo

So there is an angular momentum after the field is switched off, and its magnitude scales with the size
of the initial field. In another way, we can say that the electric and magnetic fields also have angular
momentum, just as they have an energy density. In fact, the fields carry energy, momentum, and
angular momentum, a fact which is most easily seen from their effect on simple charge distributions
like this one.

What about the rate of rotation? The net angular momentum for an object must equate to its moment
of inertia I and rate of angular rotation ω:

∑
L=Iω. For a thin circular ring of mass m and radius a,

we know that I =ma2.i This is the final thing we need:

Lf = Iω = ωma2 =
1
2
qa2Bo =⇒ ω =

qBo

2m

In the end, ω depends only on the initial field strength, and the charge/mass ratio of the ring – not at
all on the size of the ring.

2. (Purcell 7.23) There is evidence that a magnetic field exists in most of the interstellar space with a
strength between 10−9 and 10−10 T. Adopting 3× 10−10 T as a typical value, find the total energy stored
in the magnetic field of the galaxy. Assume the galaxy is a disk roughly 1021 m in diameter and 1019 m
thick. Assuming stars radiate about 1037 W, how many years of starlight is the magnetic energy worth?

Don’t over-think this one. It is easier than it sounds. The energy per unit volume contained in the
magnetic field is B2/2µo. The total energy contained in the magnetic field over some volume is:

U =
1

2µo

�
B2 dV

If we assume that the interstellar magnetic field has a constant value Bo, the volume integral is trivial,
and the total energy contained in the field in a volume V is just B2

oV/2µo. All we need to do is find
the volume of the galaxy! If we model the galaxy as a disk of diameter 1021 m and thickness 1019 m,
then

iOf course by “know" we mean “you can look these things up."



V = π

(
1
2
× 1021 m

) (
1019 m

)
≈ 8× 1060 m3

The total energy stored in the magnetic field is then

U =
µoB

2
o

2
V ≈ 3× 1047 J

If all stars radiate about 1037 W, since P =dU/dt, the time ∆t it takes to radiate away all the energy
is about

∆t =
U

P
≈ ×1047 J

1037 J/s
= 3× 1010 s ∼ 900 yrs

3. Purcell 9.10 Find the magnetic field at a point P midway between the plates of capacitor a distance r

from the axis of symmetry. A current I is flowing through the capacitor.

We assume that the magnetic field circles the capacitor axis, consistent with the magnetic field flowing
through the wires leading to the capacitor. If the capacitor spacing s is small, the electric field will be
fairly uniform. Let the plates be squares of side b to be concrete.

E =
∆V

s
=

Q

sC
=

Qs

sεob2
=

Q

εob2

The electric flux through a circle of radius r, through the point of interest, is

ΦE = πr2E =
πr2Q

b2
,

The time rate of change of the electric flux gives us the magnetic field:

�
~B · d~l = 2πrB =

1
c2

dΦE

dt
=

1
c2

πr2

εob2

dQ

dt
,

Rearranging, and noting 1
c2 =εoµo,

B =
r

2c2εob2

dQ

dt
=

µor

2b2

dQ

dt

Finally, conservation of charge dictates that the time rate of change of charge going to or from the
capacitor must be the same as the current flowing: I =dQ/dt:

B =
µoIr

2b2

At the edge of the capacitor (r=b), this is the same as the magnetic field around a long wire.



4. Serway 32.69 At t = 0, the open switch in the figure below is closed. By using Kirchhoff’s rules for
the instantaneous currents and voltages in this two-loop circuit, show that the current in the inductor at
time t>0 is

I(t) =
∆V

R1

[
1− e−(R′/L)t

]
where R′=R1R2/ (R1 + R2)
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Figure 3: Problem 4: an RL circuit.

We should note that this circuit looks a lot like a “realistic" version of our ideal RL circuit - the bat-
tery has some internal resistance R1, and the inductor has some finite resistance R2. This may not be
such a silly problem.

Let a current I2 flow through resistor R2, a current I through the inductor. Conservation of charge
means that a current I2 + I must flow through resistor R1 (and through the battery ∆V ). First, apply
conservation of energy to the loop containing R1 and R2:

∆V − (I + I2) R1 − I2R2 = 0

Next, apply conservation of energy to the loop containing R2 and L:

∆V − (I + I2) R1 − L
dI

dt
= 0

We can solve the first equation for I2, the current in resistor 2, and plug that into the second equation.
Step one:

∆V − (I + I2) R1 − I2R2 = 0
I2 (R1 + R2) = ∆V − IR1

I2 =
∆V − IR1

R1 + R2

Step two, substitute and rearrange:



∆V − (I + I2)R1 − L
dI

dt
= 0

∆V − IR1 − I2R1 − L
dI

dt
= 0

∆V − IR1 −
(

∆V − IR1

R1 + R2

)
R1 − L

dI

dt
= 0

∆V − ∆V

(
R1

R1 + R2

)
− IR1 +

IR2
1

R1 + R2
− L

dI

dt
= 0

∆V

(
1− R1

R1 + R2

)
− IR1

(
1− R1

R1 + R2

)
− L

dI

dt
= 0

∆V

(
R2

R1 + R2

)
− IR1

(
R2

R1 + R2

)
− L

dI

dt
= 0

How do we proceed from here? We want to make this equation look like one we’ve already solved,
namely, the equation for a simple LR circuit. First, define a quantity ∆V ′, which is just the first term
in our equation above:

∆V ′ = ∆V
R2

R1 + R2

This term is just the potential difference we would have across R2 if the inductor were not present.
Next, define a quantity R′, which is most of the second term in our main equation:

R′ =
R1R2

R1 + R2

This is the same as a parallel combination of R1 and R2. Now rewrite our main equation:

∆V

(
R2

R1 + R2

)
− IR1

(
R2

R1 + R2

)
− L

dI

dt
= 0

∆V ′ − IR′ − L
dI

dt
= 0

Aha! This is the same differential equation for an LR circuit we already solved. We never solve
equations more than once . . . the same equations have the same solutions, so we can just write down
the result:

I(t) =
∆V ′

R′

(
1− e−R′t/L

)
Now notice that ∆V ′/R′=∆V/R1, something you can easily verify, and we have our final answer:

I(t) =
∆V

R1

(
1− e−R′t/L

)

5. Purcell 10.7 A cell membrane typically has a capacitance around 1 µF/cm2. It is believed the membrane



consists of material having a dielectric constant of κ∼3. Find the thickness this implies. Other electrical
measurements have indicated that the resistance of 1 cm2 of cell membrane is around 1000 Ω. Show that
the time constant of such a leaky capacitor is independent of the area of the capacitor. How large is it in
this case? What is the resistivity?

Our first key assumption is that we can model our cell membrane as a parallel plate capacitor. This
seems outlandishly stupid on first sight, but in fact it is a reasonable starting point for modeling the
phospholipid bilayer in a cell membrane. The polar head groups on the lipid molecules in the lipid
bilayer do form an extended structure that resembles a capacitor, if we think about the charge transfer
involved. Anyway: if you are not up on your microbiology (and it has been a while for me), just take
this starting point for granted for now.

This problem is a lot easier than it looks if we just write down the expression for capacitance per
unit area. That is what we are given, and sometimes when you aren’t quite sure what to do, just
write down what you know. Let the interior of the cell membrane have a thickness d and a relative
dielectric constant κ. Then,

C

A
=

κεo

d
= 1µF/cm2

As it turns out, capacitance per unit area depends only on the spacing between charges, in this case
the thickness of the cell membrane, so we can find d easily:

d =
κεo

C/A
=≈ 2.7× 10−9 m

Be careful with the units! This is about 3 nm, which seems about the right order of magnitude for the
length of a small lipid molecule. What about our leaky capacitor? All this means is that the capacitor
lets some dc current through it, as if it had a resistor in parallel that let some current “leak" around it.
In other words, a “leaky" capacitor is just a parallel RC circuit.

The resistive part of the circuit we can model as a cylinder of area A and thickness d, which has
a resistance of R = ρd/A. Notice that the resistance area product is just RA = ρd. Now, the time
constant of a parallel RC circuit is just τ =RC. This is the same thing as multiplying the capacitance
per unit area and the resistance area product: τ = RC = (RA)(C/A). Basically: we can calculate the
time constant of our leaky capacitor without knowing its area.

τ = RC = (RA)
(

C

A

)
=

(
ρd

A

) (
κεoA

d

)
= ρκεo

Independent of area, as desired, and also independent of thickness! Given the value of the resistance
R for a specific area A, we can find the area product RA and calculate the resistivity:

ρ =
RA

d
≈ 4× 107 Ω ·m

Given a resistivity, we can get a number for the time constant, τ≈10−3 s.

6. Serway 32.45 Two inductors having self-inductance L1 and L2 are connected in parallel to a time-



varying source of current I(t). The mutual inductance between the two inductors is M12. Determine the
equivalent self-inductance Leq for the system.

Since our two inductors are in parallel, they must have the same voltage, but they will in general have
different currents. We can write the voltage on either in a very general way as the sum of two terms:
the self inductance, which for a given inductor gives a contribution proportional to the rate of change
of its own current; and the mutual inductance, proportional to the current through the other inductor.
Call the source voltage ∆V , the inductance of the two inductors L1 and L2, the current in each I1 and
I2, and their mutual inductance M . The general expression for the voltage on either inductor is:

∆V = −L1
dI1

dt
−M

dI2

dt
(1)

∆V = −L2
dI2

dt
−M

dI1

dt
(2)

Since the two inductors are in parallel, we know that their individual currents must total the current
I leaving the source: I = I1 + I2. What we would like to do is come up with an equation relating
the time derivative of the total current, dI/dt, to the source voltage, such that we can find an effective
inductance: ∆V =−LeqdI/dt. To start with, we can rearrange equations 1 and 2:

−dI1

dt
=

∆V

L1
+

M

L1

dI2

dt
(3)

−dI2

dt
=

∆V

L2
+

M

L2

dI1

dt
(4)

Note the nice symmetry of our equations - we can basically just swap 1 and 2 to get from one to the
other. We can use this later to save a bit of work. First, plug equation 3 into equation 2 and simplify:

∆V = −L2
dI2

dt
−M

dI1

dt
= −L2

dI2

dt
+ M

[
∆V

L1
+

M

L1

dI2

dt

]
∆V − ∆V

[
M

L1

]
=

[
M2

L1
− L2

]
dI2

dt

∆V

[
1− M

L1

]
=

[
M2

L1
− L2

]
dI2

dt

∆V [L1 −M ] =
[
M2 − L1L2

] dI2

dt

=⇒ dI2

dt
= ∆V

[
L1 −M

M2 − L1L2

]
(5)

Now we have an expression for dI2/dt which does not involve I1. We can follow exactly the same
procedure, substituting equation 4 into equation 1. Since the equations are nicely symmetric, you
should be able to write down the answer by inspection after completing the work above:

dI1

dt
= ∆V

[
L2 −M

M2 − L1L2

]
(6)

For the final step, add equations 5 and 6 together, and remember I =I1 + I2:



dI1

dt
+

dI2

dt
= ∆V

[
L1 −M

M2 − L1L2

]
+ ∆V

[
L2 −M

M2 − L1L2

]
dI

dt
= ∆V

[
L1 + L2 − 2M

M2 − L1L2

]
∆V = −

[
L1L2 −M2

L1 + L2 − 2M

]
dI

dt
≡ −Leq

dI

dt
with Leq =

L1L2 −M2

L1 + L2 − 2M

It is interesting to notice that if the two inductors are well isolated, such that M = 0, the parallel
inductors add just like parallel resistors. The same happens for series inductors - if they are decoupled
(M =0), they add just like resistors.


