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Exercises
1. 10 points. An ion milling machine uses a beam of gallium ions (m = 70 u) to carve microstructures from a target. A region
of uniform electric field between parallel sheets of charge is used for precise control of the beam direction. Single ionized gallium
atoms with initially horizontal velocity of 1.8×104 m/s enter a 2.0 cm-long region of uniform electric field which points vertically
upward, as shown below. The ions are redirected by the field, and exit the region at the angle θ shown. If the field is set to a value of
E =90 N/C, what is the exit angle θ?
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A singly-ionized gallium atom has a charge of q =+e, and the mass of m=70 u means 70 atomic mass units, where one atomic mass
unit is 1 u=1.66× 10−27 kg.

What we really have here is a particle under the influence of a constant force, just as if we were to throw a ball horizontally and watch
its trajectory under the influence of gravity (the only difference is that since we have negative charges, things can “fall up"). To start
with, we will place the origin at the ion’s initial position, let the positive x axi run to the right, and let the positive y axis run straight
up. Thus, the particle starts with a velocity purely in the x direction: ~v0 =vx x̂.

While the particle is in the electric-field-containing region, it will experience a force pointing along the +y direction, with a constant
magnitude of qE. Since the force acts only in the y direction, there will be a net acceleration only in the y direction, and the velocity in
the x direction will remain constant. Once outside the region, the particle will experience no net force, and it will therefore continue
along in a straight line. It will have acquired a y component to its velocity due to the electric force, but the x component will still be
vx. Thus, the particle exits the region with velocity ~v=vx x̂ + vy ŷ. The angle at which the particle exits the plates, measured with
respect to the x axis, must be

tan θ =
vy

vx

Thus, just like in any mechanics problem, finding the angle is reduced to a problem of finding the final velocity components, of which
we already know one. So, how do we find the final velocity in the y direction? Initially, there is no velocity in the y direction,
and while the particle is traveling between the plates, there is a net force of qE in the y direction. Thus, the particle experiences an
acceleration

ay =
Fy

m
=

qEy

m

The electric field is purely in the y direction in this case, so Ey =90 N/C. Now we know the acceleration in the y direction, so if we
can find out the time the particle takes to transit the plates, we are done, since the the transit time ∆t and acceleration ay determine
vy :

vy = ay∆t

Since the x component of the velocity is not changing, we can find the transit time by noting that the distance covered in the x
direction must be the x component of the velocity times the transit time. The distance covered in the x direction is just the width of
the plates, so:

dx = vx∆t = 2.0 cm =⇒ ∆t =
dx

vx

Putting the previous equations together, we can express vy in terms of known quantities:



Name:

vy = ay∆t = ay
dx

vx
=

qEy

m

dx

vx
=

qEydx

mvx

Finally, we can now find the angle θ as well:

tan θ =
vy

vx
=

qEydx

mvx

vx
=

qEydx

mv2
x

And that’s that. Now we plug in the numbers we have, watching the units carefully:

θ = tan−1

»
qEydx

mv2
x

–
= tan−1

" `
1.6× 10−19 C

´
(90 N/C) (0.02 m)

(70 · 1.66× 10−27 kg) (1.8× 104 m/s)2

#

= tan−1

»
7.6× 10−3 N

kg ·m/s2

–
note 1 N=1 kg ·m/s2

= tan−1 7.6× 10−3

≈ 0.44◦

2. 15 points. In the circuit below, if R0 is given, what value must the R1 have for the equivalent resistance between the two terminals
a and b to be R0?

R1 R1

R1 R0

a

b

This one is, admittedly, a bit messy. The end result does have a certain elegance though ...

With any complicated resistor problem, we first try to find sets of two resistors purely in parallel or purely in series. Combine any
such pairs, lather, rinse, repeat. The first pair we can spot - and the only one which is purely in series or parallel - is resistor R0 in
series with the rightmost R1. We cannot combine any other resistors, since no other pairs are purely in series or parallel. Putting
together R1 and R0 makes an equivalent resistor R2, whose value we can calculate easily:

R2 = R1 + R0

This will leave the new resistor purely in parallel with the middle R1, which means we can combine R2 and R1 into a new resistor
R3:

1

R3
=

1

R2
+

1

R1
=

1

R1 + R0
+

1

R1
=

R1 + R0 + R1

R1 (R1 + R0)
=

2R1 + R0

R2
1 + R1R0

=⇒ R3 =
R1R0 + R2

1

2R1 + R0

Our progress so far is shown below.
Now we only have R3 and one R1 left, purely in series. Combining them will give us one single equivalent resistor Req :

Req = R1 + R3 =
R1R0 + R2

1

2R1 + R0
+ R1 =

R1R0 + R2
1

2R1 + R0
+

R1 (2R1 + R0)

2R1 + R0

=
R1R0 + R2

1 + 2R2
1 + R1R0

2R1 + R0

=
3R2

1 + 2R1R0

2R1 + R0

The final bit of the problem says that we want the equivalent resistance to be exactly R0. We just need to set the above equal to R0,
and solve for R1 in terms of R0.
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R1 R1

R1 R0

R1

R1 R2

R1

R3 Req

⇒
⇒

⇒

R0 =
3R2

1 + 2R1R0

2R1 + R0

R0 (2R1 + R0) = 3R2
1 + 2R1R0

2R0R1 + R2
0 = 3R2

1 + 2R1R0

R2
0 = 3R2

1

=⇒ R1 =
R0√

3

3. 10 points. You are given two batteries, one of 9 V and internal resistance 0.50 Ω, and another of 3 V and internal resistance 0.40 Ω.
How must these batteries be connected to give the largest possible current through an external 0.30 Ω resistor? What is this current?

There are basically two interesting ways to hook up the components given: all series, and all parallel. First, one can put everything in
series. In series, the circuit is simple. You have three resistors and two batteries, and since there is only a single current in the circuit,
which we’ll call I , you can readily add up the voltage drops around the circuit to find I :

series: − 0.5Ω I + 9 V− 0.4Ω I + 3 V− 0.3Ω I = 0

12 V− 1.2Ω I = 0

I = 10 A

Putting everything in parallel looks like this:

0.5Ω

0.4Ω

0.3Ω

9V

3V

I1

I2

I3

In this case, there are three currents to deal with, it is the third I3 that we are interested in. First, we can apply the “junction rule” at
the circular dot on the right-hand side of the circuit. Current I1 enters the junction, currents I2 and I3 leave:

I1 = I2 + I3
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Next, we can apply the “loop rule" around the upper-most loop, going clockwise. Remember that crossing a battery from the little
pole (-) to the big pole (+) is a gain in voltage.

−0.5Ω I1 + 9 V− 3 V− 0.4Ω I2 = 0

We can do the same for the lower-most loop:

−0.4Ω I2 + 3 V− 0.3ΩI3 = 0

Summarizing our three equations so far (and dropping the units):

I1 − I2 − I3 = 0

−0.5I1 − 0.4I2 = −6

0.4I2 − 0.3I3 = −3

We now have three equations and three unknowns. There are a few ways to go about solving them, I will illustrate two. First, plug
the first equation into the third, and solve that for I1

0.4I2 − 0.3 (I1 − I2) = 0.7I2 − 0.3I1 = −3

=⇒ I1 =
0.7

0.3
I2 +

3

0.3

Now plug that into the second equation we have:

−0.5I1 − 0.4I2 = −0.5

„
0.7

0.3

«
− 0.4

„
3

0.3

«
− 0.4I2 = −6

I2

„
0.4 + 0.5

0.7

0.3

«
= 6− 0.5

„
3

0.3

«
I2 = 0.638 A

Now that we have I2, we can use the third equation to find I3, the desired current through the 0.3Ω resistor:

I3 =
0.4I2 + 3

0.3
= 10.85 A

Thus, connecting everything in parallel gives a slightly higher current through the resistor. One could also try to put two components
in series and the third in parallel with that; you can quickly verify that none of those three combinations yield a larger current.

Another way to solve this, perhaps more quickly, is to use matrices and Cramer’s rule,i if you are familiar with this technique. If you
are not familiar with matrices, you can skip to the next problem - you are not required or necessarily expected to know how to do
this. First, write the three equations in matrix form:

24 1 −1 −1
−0.5 −0.4 0

0 0.4 −0.3

35 24I1

I2

I3

35 =

24 0
−6
−3

35
aI = V

The matrix a times the column vector I gives the column vector V, and we can use the determinant of the matrix a with Cramer’s rule
to find the currents. For each current, we construct a new matrix, which is the same as the matrix a except that the the corresponding
column is replaced the column vector V. Thus, for I1, we replace column 1 in a with V, and for I2, we replace column 2 in a with
V. We find the current then by taking the new matrix, calculating its determinant, and dividing that by the determinant of a. Below,
we have highlighted the columns in a which have been replaced to make this more clear:

I1 =

˛̨̨̨
˛̨ 0 −1 −1
−6 −0.4 0
−3 0.4 −0.3

˛̨̨̨
˛̨

deta
I2 =

˛̨̨̨
˛̨ 1 0 −1
−0.5 −6 0

0 −3 −0.3

˛̨̨̨
˛̨

deta
I3 =

˛̨̨̨
˛̨ 1 −1 0
−0.5 −0.4 −6

0 0.4 −3

˛̨̨̨
˛̨

deta

Now we need to calculate the determinant of each new matrix, and divide that by the determinant of a.ii First, the determinant of a.

iSee ‘Cramer’s rule’ in the Wikipedia to see how this works.
iiAgain, the Wikipedia entry for ‘determinant’ is quite instructive.
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det a = (1)(−0.4)(−0.3)− (1)(0)(0.4) + (−1)(0)(0)− (−1)(−0.5)(−0.3)

+ (−1)(−0.5)(0.4)− (−1)(−0.4)(0) = 0.47

We can now find the currents readily from the determinants of the modified matrices above and that of a we just found. We really
only want I3, so we can find that directly:

I3 =

˛̨̨̨
˛̨ 1 −1 0
−0.5 −0.4 −6

0 0.4 −3

˛̨̨̨
˛̨

deta
=

3(0.4) + 6(0.4) + 3(0.5)

0.47
= 10.85 A

This time, we omitted the terms in the determinant which give zeros. Once you are familiar with this method of solving systems of
equations, it can be quite efficient. You can complete the same procedure for I2 and I1, you should find I2 =0.638 A and I1 =11.49 A.


