
University of Alabama
Department of Physics and Astronomy

PH 106-4 / LeClair Fall 2008

Curvilinear Coordinates

Note that we use the convention that the cartesian unit vectors are x̂, ŷ, and ẑ, rather than ı̂, ̂,
and k̂, using the substitutions x̂ = ı̂, ŷ = ̂, and ẑ = k̂.

Definition of coordinates

Table 1: Relationships between coordinates in different systems.†

Cartesian (x, y, z) Cylindrical (R,ϕ, z) Spherical (r, θ, ϕ)

R =
√

x2 + y2 x = R cos ϕ x = r sin θ cos ϕ
ϕ = tan−1

( y
x

)
y = R sinϕ y = r sin θ sinϕ

z = z z = z z = r cos θ

r =
√

x2 + y2 + z2 r =
√

R2 + z2 R = r sin θ

θ = tan−1

(√
x2+y2

z

)
θ = tan−1

(
R
z

)
ϕ = ϕ

ϕ = tan−1
( y

x

)
ϕ = ϕ z = r cos θ

†See also http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates and references therein.

Definition of unit vectors

Cartesian (x, y, z) Cylindrical (R,ϕ, z) Spherical (r, θ, ϕ)

R̂ = x
R x̂ + y

R ŷ x̂ = cos ϕ R̂− sinϕ ϕ̂ x̂ = sin θ cos ϕ r̂ + cos θ cos ϕ θ̂− sinϕ ϕ̂

ϕ̂ = − y
R x̂ + x

R ŷ ŷ = sinϕ R̂ + cos ϕ ϕ̂ ŷ = sin θ sinϕ r̂ + cos θ sinϕ θ̂ + cos ϕ ϕ̂

ẑ = ẑ ẑ = ẑ ẑ = cos θ r̂− sin θ θ̂

r̂ = 1
r (x x̂ + y ŷ + z ẑ) r̂ = 1

r

(
R R̂ + z ẑ

)
R̂ = sin θ r̂ + cos θ θ̂

θ̂ = 1
rR

(
xz x̂ + yz ŷ −R2ẑ

)
θ̂ = 1

r

(
z R̂−Rẑ

)
ϕ̂ = ϕ̂

ϕ̂ = 1
R (−y x̂ + x ŷ) ϕ̂ = ϕ̂ ẑ = cos θ r̂− sin θ θ̂

http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates


Line, surface, and volume elements in different coordinate systems.

Cartesian

d~l = x̂ dx + ŷ dy + ẑ dz

d~S =


x̂ dy dz yz-plane
ŷ dx dz xz-plane
ẑ dx dy xy-plane

dV = dx dy dz

Cylindrical

d~l = R̂ dR + ϕ̂ R dϕ + ẑ dz

d~S =


R̂R dϕ dz curved-surface
ϕ̂ dR dz meridional-plane

ẑR dR dϕ top/bottom-plane

dV = R dR dϕ dz

Spherical

d~l = r̂ dr + θ̂ r sin θ dθ + ϕ̂ r dϕ

d~S =


r̂ r2 sin θ dθ dϕ curved-surface
θ̂ r sin θ dr dϕ meridional-plane

ϕ̂ r dr dθ xy-plane

dV = r2 sin θ dr dθ dϕ



Dot products between fundamental unit vectors.

Cartesian Cylindrical Spherical
x̂ ŷ ẑ r̂ θ̂ ϕ̂ R̂ ϕ̂ ẑ

x̂ 1 0 0 sin θ cos ϕ cos θ cos ϕ − sin ϕ cos ϕ − sinϕ 0
ŷ 0 1 0 sin θ sinϕ cos θ sinϕ cos ϕ sinϕ cos ϕ 0
ẑ 0 0 1 cos θ − sin θ 0 0 0 1
r̂ sin θ cos ϕ sin θ sinϕ cos θ 1 0 0 sin θ 0 cos θ

θ̂ cos θ cos ϕ cos θ sinϕ −sinθ 0 1 cos θ 0 − sin θ
ϕ̂ − sinϕ cos ϕ 0 0 0 1 0 1 0
R̂ cos ϕ sinϕ 0 sin θ cos θ 0 1 0 0
ϕ̂ − sinϕ cos ϕ 0 0 0 1 0 1 0
ẑ 0 0 1 cos θ − sin θ 0 0 0 1

Scalar products

Say you have two vectors, ~a and ~b:

~a = ax x̂ + ay ŷ + az ẑ

~b = bx x̂ + by ŷ + bz ẑ

The ‘dot’ or scalar product of these two vectors results in a scalar, or just a number. We find this
number by multiplying like components:

~a · ~b = axbx + ayby + azbz =
n∑

i=1

aibi

where the latter sum runs over the number of dimensions in your problem (so from 1 to 3 for a
normal 3-dimensional problem). The magnitude one of these vectors is simply related to the dot
product:

|~a| =
√

~a ·~a =
√

a2
x + a2

y + a2
z

This gives us a geometric interpretation of the dot prodcut: it is the length of a square of side ~a.
We can also write the scalar product in terms of vector magnitudes, and the angle between ~a and
~b:



~a · ~b = |~a||~b| cos θ

Put another way, given two vectors, the angle between them can be found readily:

θ = cos−1

(
~a · ~b
|~a||~b|

)

Of course, this implies that if ~a and ~b are orthogonal (at right angles), their dot product is zero:

if ~a ⊥ ~b, then ~a · ~b = 0

Moreover, two vectors are orthogonal (perpendicular) if and only if their dot product is zero, and
they have non-zero length, providing a simple way to test for orthogonality. A few other properties
are tabulated below.

Table 2: Algebraic properties of the scalar product

formula relationship

~a · ~b = ~b ·~a commutative
~a · (~b +~c) = ~a · ~b +~a ·~c distributive

~a · (r~b +~c) = r(~a · ~b) + r(~a ·~c) bilinear
(c1~a) · (c2

~b) = (c1c2)(~a · ~b) multiplication by scalars
if ~a ⊥ ~b, then ~a · ~b = 0 orthogonality

Vector products

The ‘cross’ or vector product between these two vectors results in a pseudovector, also known as an
‘axial vector.’i An easy way to remember how to calculate the cross product of these two vectors,
~c=~a× ~b, is to take the determinant of the following matrix:

 x̂ ŷ ẑ
ax ay az

bx by bz


iPseudovectors act just like real vectors, except they gain a sign change under improper rotation. See for example,

the Wikipedia page “Pseudovector.” An improper rotation is an inversion followed by a normal (proper) rotation,
just what we are doing when we switch between right- and left-handed coordinate systems. A proper rotation has no
inversion step, just rotation.



Or, explicitly:

~c = det

∣∣∣∣∣∣∣
x̂ ŷ ẑ
ax ay az

bx by bz

∣∣∣∣∣∣∣ = (aybz − azby) x̂ + (azbx − axbz) ŷ + (axby − aybx) ẑ

Note then that the magnitude of the cross product is

|~a× ~b| = |~a||~b| sin θ

where θ is the smallest angle between ~a and ~b. Geometrically, the cross product is the (signed)
volume of a parallelepiped defined by the three vectors given. The pseudovector ~c resulting from a
cross product of ~a and ~b is perpendicular to the plane formed by ~a and ~b, with a direction given
by the right-hand rule:

~a× ~b = ab sin θ n̂

where n̂ is a unit vector perpendicular to the plane containing ~a and ~b. Note of course that if ~a
and ~b are collinear (i.e., the angle between them is either 0◦ or 180◦), the cross product is zero.

Right-hand rule
1. Point the fingers of your right hand along the direction of ~a.
2. Point your thumb in the direction of ~b.
3. The pseudovector ~c = ~a× ~b points out from the back of your hand.

The cross product is also anticommutative, distributive over addition, and has numerous other
algebraic properties:
Finally, note that the unit vectors in a orthogonal coordinate system follow a cyclical permutation:

x̂× ŷ = ẑ

ŷ × ẑ = x̂

ẑ× x̂ = ŷ



Table 3: Algebraic properties of the vector product

formula relationship

~a× ~b = −~b×~a anticommutative
~a×

(
~b +~c

)
distributive over addition

(r~a)× ~b = ~a× (r~b) = r(~a× ~b) compatible with scalar multiplication
~a× (~b×~c) + ~b× (~c×~a) +~c× (~a× ~b) = 0 not associative; obeys Jacobi identity

~a× (~b×~c) = ~b(~a · ~b)−~c(~a · ~b) triple vector product expansion
(~a× ~b)×~c = −~c× (~a× ~b) = −~a(~b ·~c) + ~b(~a ·~c) triple vector product expansion

~a · (~b×~c) = ~b · (~c×~a) = ~c · (~a× ~b) triple scalar product expansion†
|~a× ~b|2 + |~a · ~b|2 = |~a|2|~b|2 relation between cross and dot product

if ~a× ~b = ~a×~c then ~b = ~c iff ~a · ~b = ~a ·~c lack of cancellation
†Note that the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it

were, it would leave the cross product of a vector and a scalar, which is not defined

Example: Solving systems of linear equations

Say we have three equations and three unknowns, and we are left with the pesky problem of solving
them. There are many ways to do this, we will illustrate two of them. Take, for example, three
equations that result from applying Kirchhoff’s rules to a particular multiple loop dc circuit:

I1 − I2 − I3 = 0

R1I1 + R3I3 = V1

R2I2 −R3I3 = −V2

The first way we can proceed is by substituting the first equation into the second:

V1 = R1I1 + R3I3 = R1 (I2 + I3) + R3I3 = R1I2 + (R1 + R3) I3

=⇒ V1 = R1I2 + (R1 + R3) I3

Now our three equations look like this:

I1 − I2 − I3 = 0

R1I2 + (R1 + R3) I3 = V1

R2I2 −R3I3 = −V2

The last two equations now contain only I1 and I2, so we can solve the third equation for I2 ...



I2 =
I3R3 − V2

R2

... and plug it in to the second one:

V1 = R1I2 + (R1 + R3) I3 = R1

(
I3R3 − V2

R2

)
+ (R1 + R3) I3

V1 +
V2R1

R2
−
(

R1 + R3 +
R1R3

R2

)
I3 = 0

I3 =
V1 + V2R1

R2

R1 + R3 + R1R3
R2

I3 =
V1R2 + V2R1

R1R2 + R2R3 + R1R3

Now that you know I3, you can plug it in the expression for I2 above.

What is the second way to solve this? We can start with our original equations, but in a different
order:

I1 − I2 − I3 = 0

R2I2 −R3I3 = −V2

R1I1 + R3I3 = V1

The trick we want to use is formally known as ‘Gaussian elimination,’ but it just involves adding
these three equations together in different ways to eliminate terms. First, take the first equation
above, multiply it by −R1, and add it to the third:

[−R1I1 + R1I2 + R1I3] = 0

+ R1I1 + R3I3 = V1

=⇒ R1I2 + (R1 + R3) I3 = V1

Now take the second equation, multiply it by −R1/R2, and add it to the new equation above:



−R1

R2
[R2I2 −R3I3] = −R1

R2
[−V2]

+ R1I2 + (R1 + R3) I3 = V1

=⇒
(

R1R3

R2
+ R1 + R3

)
I3 =

R1

R2
V2 + V1

Now the resulting equation has only I3 in it. Solve this for I3, and proceed as above.

Optional: There is one more way to solve this set of equations using matrices and Cramer’s rule,ii

if you are familiar with this technique. If you are not familiar with matrices, you can skip to the
next problem - you are not required or necessarily expected to know how to do this. First, write
the three equations in matrix form:

R1 0 R3

0 R2 −R3

1 −1 −1


I1

I2

I3

 =

 V1

−V2

0


aI = V

The matrix a times the column vector I gives the column vector V, and we can use the determinant
of the matrix a with Cramer’s rule to find the currents. For each current, we construct a new matrix,
which is the same as the matrix a except that the the corresponding column is replaced the column
vector V. Thus, for I1, we replace column 1 in a with V, and for I2, we replace column 2 in
a with V. We find the current then by taking the new matrix, calculating its determinant, and
dividing that by the determinant of a. Below, we have highlighted the columns in a which have
been replaced to make this more clear:

I1 =

∣∣∣∣∣∣∣
V1 0 R3

−V2 R2 −R3

0 −1 −1

∣∣∣∣∣∣∣
deta

I2 =

∣∣∣∣∣∣∣
R1 V1 R3

0 −V2 −R3

1 0 −1

∣∣∣∣∣∣∣
deta

I3 =

∣∣∣∣∣∣∣
R1 0 V1

0 R2 −V2

1 −1 0

∣∣∣∣∣∣∣
deta

Now we need to calculate the determinant of each new matrix, and divide that by the determinant
of a.iii First, the determinant of a.

iiSee ‘Cramer’s rule’ in the Wikipedia to see how this works.
iiiAgain, the Wikipedia entry for ‘determinant’ is quite instructive.



det a = −R1R2 −R1R3 + 0− 0 + 0−R2R3 = − (R1R2 + R2R3 + R1R3)

We can now find the currents readily from the determinants of the modified matrices above and
that of a we just found:

I1 =
−V1R2 − V1R3 + 0− 0 + V2R3 − 0

− (R1R2 + R2R3 + R1R3)
=

V1 (R2 + R3)− V2R3

R1R2 + R2R3 + R1R3

I2 =
R1V2 − 0− V1R3 − 0 + 0 + R3V2

− (R1R2 + R2R3 + R1R3)
=

R3V1 − V2 (R1 + R3)
R1R2 + R2R3 + R1R3

I3 =
0−R1V2 + 0− 0 + 0− V1R2

− (R1R2 + R2R3 + R1R3)
=

R1V2 + R2V1

R1R2 + R2R3 + R1R3

These are the same results you would get by continuing on with either of the two previous methods.
Both numerically and symbolically, we can see from the above that I1 =I2+I3:

I2 + I3 =
R3V1 − V2 (R1 + R3) + R1V2 + R2V1

R1R2 + R2R3 + R1R3

=
V1 (R2 + R2) + V2 (R1 −R1 −R3)

R1R2 + R2R3 + R1R3

=
V1 (R2 + R2)− V2R3

R1R2 + R2R3 + R1R3
= I1


