University of Alabama
 Department of Physics and Astronomy

Quiz I: Electrostatics

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{e, 12}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \\
& \qquad \overrightarrow{\mathbf{E}}=k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}} \\
& \overrightarrow{\mathbf{F}}_{21}=q_{2} \overrightarrow{\mathbf{E}}_{1} \\
& \text { above valid for point charges }
\end{aligned}
$$

$$
\sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

$$
k_{e} \approx 9 \times 10^{9}\left[\frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right]
$$

$$
e=1.6 \times 10^{-19}[\mathrm{C}]
$$

$$
m_{e}=9.11 \times 10^{-} 31[\mathrm{~kg}]
$$

1. An electron (of charge $-e$ and mass m_{e}) enters a region of uniform electric field $\overrightarrow{\mathbf{E}}=200 \hat{\mathbf{x}}[\mathrm{~N} / \mathrm{C}]$ with velocity $\overrightarrow{\mathbf{v}}_{i}=3.0 \times$ $10^{6} \hat{\mathbf{x}}[\mathrm{~m} / \mathrm{s}]$. What is magnitude the acceleration $|\overrightarrow{\mathbf{a}}|$ of the electron due to the electric field?

$$
\begin{array}{lc}
\square & -3.5 \times 10^{13}[\mathrm{~m} / \mathrm{s}] \\
\square & 4.6 \times 10^{8}[\mathrm{~m} / \mathrm{s}] \\
\square & -1.4 \times 10^{15}[\mathrm{~m} / \mathrm{s}] \\
\square & 6.8 \times 10^{12}[\mathrm{~m} / \mathrm{s}]
\end{array}
$$

2. A test charge of $3[\mu \mathrm{C}]$ is at a point P where an external electric field is directed to the right and has a magnitude of $4 \times 10^{6}[\mathrm{~N} / \mathrm{C}]$ If the test charge is replaced with another test charge of $-3[\mu \mathrm{C}]$, the external electric field at P :

- is unaffected
- reverses direction
\square changes in a way that cannot be determined

3. A "free" electron and a "free" proton are placed in an identical electric field. Which of the following statements are true? Check all that apply. Note that the electron mass is $9.11 \times 10^{-31} \mathrm{~kg}$, and the proton mass is $1.67 \times 10^{-27} \mathrm{~kg}$.

- Each particle is acted on by the same electric force and has the same acceleration.
\square The electric force on the proton is greater in magnitude than the force on the electron, but in the opposite direction.
\square The electric force on the proton is equal in magnitude to the force on the electron, but in the opposite direction.
\square The magnitude of the acceleration of the electron is greater than that of the proton.
\square Both particles have the same acceleration.

4. Determine the point (other than infinity) at which the total electric field is zero.

- 1.8 m to the right of the negative charge
$\square 0.61 \mathrm{~m}$ to the right of the positive charge
$\square 0.39 \mathrm{~m}$ to the right of the negative charge
- 1.8 m to the left of the negative charge

5. Which of the following is true for the electric force, but not the gravitational force? Check all that apply.

The force propagates at a speed of c
\bigcirc The force acts at a distance without any intervening medium
\bigcirc The force between two bodies depends on the square of the distance between them
The force between two bodies can be repulsive as well as attractive.

