University of Alabama
 Department of Physics and Astronomy

PH ro6-4 / LeClair
Fall 2008

Quiz 2: Gauss

$$
\overrightarrow{\mathbf{E}}=\frac{k_{e} q}{r^{2}} \hat{\mathbf{r}} \quad \text { point charge } \quad \Phi_{E}=\oint_{S} \overrightarrow{\mathbf{E}} \cdot \hat{\mathbf{n}} d A=4 \pi k_{e} q_{\text {encl }} \quad \oint_{\text {(clever surface) }} \overrightarrow{\mathbf{E}} \cdot \hat{\mathbf{n}} d A=|\overrightarrow{\mathbf{E}} \cdot \hat{\mathbf{n}}| A_{\text {surf }}
$$

I. If the net flux through a closed surface is zero, the following four statements could be true. Which of the statements must be true?
\square There are no charges inside the surface

- The net charge inside the surface is zero
- The electric field is zero everywhere on the surface
- The number of electric field lines entering the surface equals the number leaving the surface

Only the second and fourth choices must be true.
The first statement is not necessarily true because an equal number of positive and negative charges could be present inside the surface. The third is not necessarily true either: consider a point charge located outside of a Gaussian surface (say, a point charge located just outside a sphere). A nonzero electric field exists everywhere on the surface, but the charge is not enclosed within the surface, so the net flux is still zero.
2. A point charge q is located at the center of a spherical shell of radius a that has a charge $-q$ uniformly distributed on its surface. Find the electric field for a point a distance $r>a$ from the center of the shell (i.e., outside the sphere).

- $E=\frac{k_{e} q}{r^{2}}$
- $E=\frac{k_{e q}}{4 \pi r^{2}}$
- $E=0$
- $E=\frac{k_{e q}{ }^{2}}{r^{2}}$

From Gauss' law, we can find the field at a distance r from some point by finding the flux through a sphere of radius r centered on that point. The flux through that sphere must simply be the net charge enclosed within the sphere (divided by ϵ_{0}).

Outside of the spherical shell, what charge would be enclosed by a sphere of radius r ? The net charge enclosed would be the point charge plus the spherical shell, $q_{\text {tot }}=q+(-q)=0$. Since there is no charge enclosed, the flux through our Gaussian sphere is zero, and the electric field is zero.

Remember, the spherical shell looks like a point charge of magnitude $-q$ if we are at a distance $r>a$. This means the whole arrangement of charges looks like two point charges, q and $-q$ at the same position, which just cancel each other out.
3. A spherical surface surrounds a point charge q. Describe what happens to the total flux through the surface if the charge is moved outside the surface

- The flux is increased.
- The flux is decreased.
- The flux remains constant.
- The flux goes to zero.

See the answers to the previous two questions: no enclosed charge means no flux.

Name

4. A spherical surface surrounds a point charge q. Describe what happens to the total flux through the surface if the volume of the sphere is doubled.

- The flux is tripled.
- The flux decreases by $1 / 3$.
- The flux remains constant.
- The flux goes to zero.

The total flux through any closed surface containing a charge q is always q / ϵ_{0}, irrespective of the size or shape of the surface. Doubling the volume of the sphere makes no difference, since the same charge q is enclosed..
5. In the figure above, a point charge $1 Q^{+}$is at the center of an imaginary spherical Gaussian surface and another point charge $2 Q^{+}$ is outside of the Gaussian surface. Point P is on the surface of the sphere. Which one of the following statements is true?

- Both contribute to the net electric flux through the sphere but only $1 Q^{+}$contributes to the electric field at point P.
- Both charges contribute to the net electric flux through the sphere but only $2 Q^{+}$contributes to the electric field at point P.
- Only $1 Q^{+}$contributes to the net electric flux through the sphere but both charges contribute to the electric field at point P.
- Only $2 Q^{+}$contributes to the net electric flux through the sphere but both charges contribute to the electric field at point P.
- Only $1 Q^{+}$contributes to the net electric flux through the sphere and to the electric field at point P on the sphere.
\square Only $2 Q^{+}$contributes to the net electric flux through the sphere and to the electric field at point P on the sphere.
\square I don't know (this answer is worth I/ o of full credit)

We first note that only Q_{1}^{+}can contribute to the flux through the Gaussian surface, since it is the only charge enclosed by the surface. However, both charges contribute to the electric field at the particular point P. Imagine that the spherical surface wasn't there at all the electric field at P would clearly have a contribution from both charges. The total flux through the entire sphere does depend on only Q_{1}^{+}, as Gauss' law says it must, but the field at any particular point on the sphere does depend on Q_{2}^{+}.

