Back of the envelope: estimation \& orders of magnitude

how to solve problems?

- write down the answer (or something close)
- break the problem into estimable chunks
- actually solve it, if accuracy is required

writing down the answer

- i.e., come up with a reasonably close solution
- do you need more than that? often not!

example

- it is about 200 mi to Atlanta
- how long will it take to drive?
- $50-60 \mathrm{mph}$ average, few stops ... $\sim 3-4$ hours
- probably good enough for planning!

ballpark ...

- too high, too low, or just right?
- e.g., buying a new game -
- think $\sim \$ 100$ is reasonable
- see it for $\$ 30$: buy right now
- see it for $\$ 300$: no way
- see it for \$100: now have to think harder ...
- only the power of 10 really matters!

break up the problem

- too hard to guess the answer within I0x?
- break it up into estimable pieces
- upper and lower bounds on the answer
- e.g., people in this room: more than 10 , less than 100.
- what is a good guess between these two?

Average power of ten

- geometric mean is a good 'average' guess
- better than mean of 55
- nth root of the product of n numbers
- same factor away from upper \& lower bounds
- powers of 10: average exponents. $10^{1 / 2} \sim 3$
- $10^{1+2}=10^{1.5} \sim(3)(10) \sim 30$
- otherwise, average prefactors \& exponents

$$
- \text { e.g., } 3 \& 100=\left(3 x \mid 0^{0}\right) \&\left(|x| 0^{2}\right) \sim 15
$$

example: stack of lottery tickets

- chances are I in 100 million
- how tall is a stack of 100 million tickets?
- tall building, 100 m ?
- small mountain, 1000 m ?
- Everest, $10^{4} \mathrm{~m}$?
- atmosphere, $10^{5} \mathrm{~m}$?
- NYC-Chicago, $10^{6} \mathrm{~m}$?

what do we know?

- 10^{8} possible tickets
- thickness? hard to reliably estimate ...
- ream of paper: 500 sheets $\sim 3 \mathrm{~cm}$
- stack of cards: 52 cards \sim Icm
- this is probably closer ...

$$
t=\frac{1 \mathrm{~cm}}{50 \text { tickets }}=2 \times 10^{-4} \mathrm{~m} / \text { ticket }
$$

total

$$
T=2 \times 10^{-4} \frac{\mathrm{~m}}{\text { ticket }} \times 10^{8} \text { tickets } \sim 2 \times 10^{4} \mathrm{~m}
$$

- twice as high as Everest or commercial jet
- pick one out of this stack ...
- say we guessed thickness of paper?
- no big deal
- factor of 2 or 3 doesn't change the 'character' of the answer

a bit harder ...

- how many airplane flights do Americans take per year?
- solution I:
- (number of americans)(flights per year per person)
= $\sim 3 \times 10^{8}$ americans (> 10 million, <1 billion)
- most: I trip (2 flights) per year
- some small \% take many more
- \# flights should be between 2-4; estimate 3
- $\mathrm{N} \sim 9 \times 10^{8}$ passengers/year

solution 2

- how many airports? say, 3 per state ~ 150
- airport is open about 16 hours (8am-midnight)
- at most 2 flights per min, $30 / \mathrm{hr}, \sim 500$ per 16 hrs
- airplane holds 50-250 passengers; geom mean ~ 100
- $\mathrm{N} \sim$ (airports)(flights/day)(pass/flight)(days/year)
$\sim(150)(100)(100)(365) \sim 5 \times 10^{8}$ passengers/yr
- factor of 2 agreement! (2005 data: 6.6×10^{8})

Classic problem ...

- Fermi: piano tuners in Chicago ...
- many estimations!
- errors tend to 'cancel' (partly psychological?)
- large leeway for 'reasonable-sounding' answers
- you can 'rig' this one before-hand ...

going wrong ...

- you have to at least be able to estimate all quantities!
- e.g.,"Drake equation"
- number of extraterrestrial civilizations in our galaxy with which we might come into contact

$$
N=R \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

$$
N=R \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

- $R=$ rate of star formation per year
- $f_{p}=$ fraction with planets
- $\mathrm{n}_{\mathrm{e}}=$ number possibly supporting life
- $f_{l}=$ fraction developing life at some point
- $f_{i}=$ fraction developing intelligent life
- $f_{c}=$ fraction developing tech for comm.
- $L=$ length of time civ releases signals

problem?

- each fraction is $0-I$, so the result is also $0-1$
- reasonable looking probability guaranteed!
- R is big ... almost guaranteed integer result
- other numbers (not R) - wild variation
- none of the prob. terms are known, or can be!
- $($ nonsense $)($ nonsense $)=$?
- still ... stimulates discussion

Accuracy

- significant figures ...
- do not imply more precision than you have
- do not loose information
- These sorts of problems: one significant digit
- apocryphal anecdote: dinosaur skeleton
- 75 million and 3 years old ...

Specific cases

- 3.14 is always enough for $\pi ; 3$ is often fine!
- unit conversions ... rough non-metric
- sphere's volume and area
- I/2 the volume and area of box it came in! (5\%)
- e.g., ball diameter 10 cm ,
$V \sim(0.5)(10)(10)(10) \sim 500 \mathrm{~cm}^{2}$
exact is $523 \mathrm{~cm}^{2}$... 4% error

units: have them in your head

- I meter $\sim 3 \mathrm{ft}$
- $\mathrm{Ikm} \sim 0.6 \mathrm{mi}$
- $\mathrm{Icm} \sim 0.4 \mathrm{in}$
- IL~I quart
- $\mathrm{lkg} \sim 2.2 \mathrm{lb}$ mass
- $1000 \mathrm{~kg} \sim$ ton
- $1 \mathrm{~m} / \mathrm{s} \sim 2.2 \mathrm{mph}$
- I year $\sim \pi \times 10^{7}$ sec
- $1 \mathrm{mi} \sim 1.6 \mathrm{~km}$
- \quad lin $\sim 2.5 \mathrm{~cm}$
- $\mathrm{IL}=1000 \mathrm{~cm}^{3}$
- $I m^{3}=1000 \mathrm{~L}$

unit conversion

- or, dimensional analysis

$$
1 \mathrm{yr}=\left(\frac{365 \text { days }}{1 \text { year }}\right)\left(\frac{24 \mathrm{hr}}{1 \text { day }}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=3.15 \times 10^{7} \mathrm{~s}
$$

$$
1 \mathrm{~m} / \mathrm{s}=\left(\frac{1 \mathrm{~m}}{\mathrm{~s}}\right)\left(\frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}\right)\left(\frac{0.6 \mathrm{mi}}{1 \mathrm{~km}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=2.2 \mathrm{mph}
$$

problem I

- How many golf balls would it take to circle the Earth at the equator?

hint I

- What's the diameter of a golf ball, roughly?
- I inch $=2.5 \mathrm{~cm}$

hint 2

- What is the circumference of the earth?
- $C=2 \pi R \quad$ (if you remember R)
- 24 time zones (if you know one)

hint 3

- 3 time zones from NY - LA, 24 total
- NY - LA ~ 3000 mi ... good reference

problem 2

- what is the surface area of a towel?
- include the fibers!

hint I

- how many fibers per square centimeter?

hint 2

- area of a towel? total fibers?

hint 3

- length and thickness of a fiber?

problem 3

- what is the mass of a mole of cats?
- Note $M_{\text {moon }}=7 \times 10^{22} \mathrm{~kg}, M_{\text {earth }}=6 \times 10^{24} \mathrm{~kg}$

more problems ...

Guesstimation: Solving the World's Problems on the Back of a Cocktail Napkin (Paperback)

by Lawrence Weinstein (Author), John A. Adam (Author)
List Price:
\$19.95
Price: \$13.57 \& eligible for FREE Super Saver Shipping on orders over \$25.

