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Exam III Solutions
1. In the figure below, block 1 has mass m1, block 2 has mass m2 (with m2>m1), and the pulley (a solid disc),
which is mounted on a horizontal axle with negligible friction, has radius R and mass M . When released from
rest, block 2 falls a distance d in t seconds without the cord slipping on the pulley. (a) What are the magnitude of
the accelerations of the blocks? (b) What is T1? (c) What is T2? (d) What is the pulley’s angular acceleration?
The moment of inertia of a solid disc is I= 1

2MR2.

Solution: Give m2>m1, we expect a clockwise rotation. Taking the positive y direction as upward, that makes
the acceleration of mass 2 negative and that of mass 1 positive. We need to do two thing: first, balance the forces
on the hanging masses, and two, analyze the torque on the disc.

With the sign conventions noted above, the forces are

T2 −m2g = −m2a (1)

T1 −m1g = m1a (2)

What we must be careful about now are the facts that the tension in each side of the rope is not just the weight
of the hanging mass (this can’t e true if the masses are accelerating, as the equations above indicate), and we
should not assume that T1 = T2 when we have the pully’s moment of inertia to consider. That means we have
three unknowns (T1, T2, and a) but only two equations. Adding the torque analysis gets us the last equation we
need.

∑
τ = RT2 −RT1 = R(T2 − T1) = Iα (3)

Noting that α = a/R, one can solve the resulting equations for T1, T2, and a. The angular acceleration is also
readily found. I’ll assume you can work out the details:
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a =
(

m2 −m1

m1 +m2 + 1
2M

)
g (4)

α =
(

m2 −m1

m1 +m2 + 1
2M

)
g

R
(5)

T1 =
(

2m1m2 + 1
2Mm1

m1 +m2 + 1
2M

)
g (6)

T2 =
(

2m1m2 + 1
2Mm2

m1 +m2 + 1
2M

)
g (7)

How do we know this is plausible? We can set I=0 to ignore the effect of the pulley, which reduces the system to
the simple case of two masses on an ideal massless pulley that we’ve already studied. With I=0:

a =
(
m2 −m1
m1 +m2

)
g (8)

T1 =
( 2m1m2
m1 +m2

)
g (9)

T2 =
( 2m1m2
m1 +m2

)
g (10)

Now we see T1 =T2, and the tensions and acceleration are just what we found before.

2. A flywheel rotating freely on a shaft is suddenly coupled by means of a drive belt to a second flywheel sitting
on a parallel shaft (see figure below). The initial angular velocity of the first flywheel is ω, that of the second is
zero. The flywheels are uniform discs of masses Ma and Mc with radii Ra and Rc respectively. The moment of
inertia of a solid disc is I = 1

2MR2. The drive belt is massless and the shafts are frictionless. (a) Calculate the
final angular velocity of each flywheel. (b) Calculate the kinetic energy lost during the coupling process. Hint: if
the belt does not slip, the linear speeds of the two rims must be equal.

Solution: If the belt doesn’t slip, the linear velocity of the wheels must be the same at their outer rim when the
final state is reached. That implies

va = vc (11)

Raωa = Rcωc (12)

ωc = Ra
Rc
ωa (13)
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The sudden coupling of the second flywheel is basically a collision, and as is usually the case with collisions,
conservation of energy is not a viable approach (how would you figure out how much energy the collision cost?).
Conservation of momentum, or angular momentum when we have a rotation problem, is the way to go. Initially
we have only the first flywheel rotating at ω, after the fact both are rotating. Conservation of angular momentum,
combined with the relationship between ωa and ωc gives:

Li = Lf (14)

Iaω = ωaIa + ωcIc = ωaIa + Ra
Rc
Ic (15)

=⇒ ωa = ω

1 +RaIc/RcIa
(16)

=⇒ ωc = ω

Rc/Ra + Ic/Ia
(17)

Using the fact that the moments of inertia are I= 1
2MR2,

ωa = ω

1 +McRc/MaRa
(18)

ωc = Ra
Rc

ω

1 +McRc/MaRa
(19)

The kinetic energy loss is straightforward to calculate, if messy.

Kf = 1
2Iaω

2
a + 1

2Icω
2
c = 1

2Iaω
2
a

(
1 + IcR

2
a

IaR2
c

)
(20)

Ki = 1
2Iaω

2 (21)

With a bit of algebra, you can work out the ratio

Kf

Ki
= MaR

2
a (Ma +Mc)

(MaRa +McRc)2 (22)
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3. A solid sphere, a solid cylinder, and a thin-walled pipe, all of mass m, roll smoothly along identical loop-the-
loop tracks when released from rest along the straight section (see figure below). The circular loop has radius R,
and the sphere, cylinder, and pipe have radius r�R (i.e., the size of the objects may be neglected when compared
to the other distances involved). If h=2.8R, which of the objects will make it to the top of the loop? Justify your
answer with an explicit calculation. The moments of inertia for the objects are listed below.

I =


2
5mr

2 sphere
1
2mr

2 cylinder

mr2 pipe

(23)

Hint: consider a single object with I = kmr2 to solve the general problem, and evaluate these three special cases
only at the end.

h R

m

Solution: To start with, we just need to do conservation of energy. The object goes through a height h− 2R to
get to the top of the loop. Including both rotational and translational kinetic energy,

mg(h− 2R) = 1
2mv

2 + 1
2(kmr2)ω2 = (1 + k)

(1
2mv

2
)

(24)

This doesn’t tell us if the object actually makes it to the top of the loop or not. For that, we need to be sure
that the velocity is high enough to be consistent with the required centripetal force. The centripetal force must
be provided by the object’s weight.

mv2

R
≥ mgv2 ≥ Rg (25)

Using the energy equation, we have another equation for v2. Combining:

v2 = 2g (h− 2R)
1 + k

≥ Rg (26)

k ≤ h− 2R
R

= h

R
− 2 (27)

Given h=2.8R, our condition is that k≤0.8. This is true for the sphere (k=2/5) and the cylinder (k=1/2), but
not for the pipe (k=1). Thus, the sphere and cylinder make it, but the pipe does not.

4. The rotational inertia (moment of inertia) of a collapsing spinning star drops to 1
3 its initial value. What is

the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?
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Solution: If we need the rotational kinetic energy ratio, we’ll have to get the relationship between the angular
velocities first. For that all we need is conservation of angular momentum, noting that the final moment of inertia
If is one third of the initial value Ii.

Li = Lf (28)

Iiωi = Ifωf = 1
3Iiωf (29)

ωf = 3ωi (30)

Makes sense: if the moment of inertia goes down three times, the rate of rotation has to go up three times to
conserve angular momentum. That’s all we need to get the kinetic energy ratio.

Ki

Kf
=

1
2Iiω

2
i

1
2Ifω

2
f

= 1
3 (31)



Formula sheet

g = 9.81 m/s2

1 N = 1 kg ·m/s2

1 J = 1 kg ·m2/s2 = 1 N ·m

Math:

ax2 + bx2 + c = 0 =⇒ x =
−b±

√
b2 − 4ac

2a

sinα± sinβ = 2 sin
1
2

(α± β) cos
1
2

(α∓ β)

cosα± cosβ = 2 cos
1
2

(α+ β) cos
1
2

(α− β)

c2 = a2 + b2 − 2ab cos θab

d

dx
sin ax = a cos ax

d

dx
cos ax = −a sin ax∫

cos axdx =
1
a

sin ax
∫

sin axdx = −
1
a

cos ax

sin θ ≈ θ small θ cos θ ≈ 1−
1
2
θ2

1-D motion:
v(t) =

d

dt
x(t)

a(t) =
d

dt
v(t) =

d2

dt2
x(t)

const. acc. ↓

xf = xi + vxit+
1
2
axt

2

v2
f = v2

i + 2ax∆x

vf = vi + at

Projectile motion:
vx(t) = vix = |~vi| cos θ

vy(t) = |~vi| sin θ − gt = viy sin θ − gt

x(t) = xi + vixt

y(t) = yi + viyt−
1
2
gt2

over level ground:

max height = H =
v2

i sin2 θi

2g

Range = R =
v2

i sin 2θi

g

Force: ∑
~F = ~Fnet = m~a =

d~p
dt∑

Fi = mai by component

~Fc =
∑

Fr = −
mv2

r
r̂

fk = µkn

Fs = −kx

Fg = −mg

Work-Energy:

K =
1
2
mv2 =

p2

2m
∆K = Kf −Ki = W

W =
∫

F (x) dx = −∆U

Ug(y) = mgy

Us(x) =
1
2
kx2

F = −
dU(x)
dx

Ki + Ui = Kf + Uf +Wext = Kf + Uf +
∫

Fext dx

Momentum, etc.:

xcom =
1

Mtot

n∑
i=1

mixi =
m1x1 +m2x2 + . . .mnxn

m1 +m2 + . . .mn

vcom =
1

Mtot

n∑
i=1

mivi =
m1v1 +m2v2 + . . .mnvn

m1 +m2 + . . .mn

Fnet = Mtotacom =
dp

dt
ptot = Mtotvcom

~p = m~v ∆p = pf − pi = Favg∆t (∆p = 0 for isolated system)

Rotation: we use radians
s = θr ← arclength

ω =
dθ

dt
=
v

r
α =

dω

dt

at = αr tangential ar =
v2

r
= ω2r radial

I =
∑

i

mir
2
i ⇒

∫
r2 dm = kmr2

Iz = Icom +md2 axis z parallel, dist d

τnet =
∑

~τ = I~α =
d~L
dt

~τ =~r× ~F |~τ | = rF sin θrF

~L =~r× ~p = I~ω

K =
1
2
Iω2 = L2/2I

∆K =
1
2
Iω2

f −
1
2
Iω2

i = W =
∫

τ dθ

P =
dW

dt
= τω

Vectors:
|~F| =

√
F 2

x + F 2
y magnitude

θ = tan−1
[
Fy

Fx

]
direction

~a · ~b =axbx + ayby + azbz =
n∑

i=1

aibi = |~a||~b| cos θ

~a × ~b =

∣∣∣∣∣∣
x̂ ŷ ẑ
ax ay az

bx by bz

∣∣∣∣∣∣ |~a × ~b| = |~a||~b| sin θ


