University of Alabama
Department of Physics and Astronomy

PH 125 / LeClair
Fall 2014

Exam III

Instructions

1. Solve 3 of 4 problems below. All problems have equal weight.
2. You must answer all parts of multi-part questions for full credit.
3. Show your work for full credit. Significant partial credit will be given.
4. You are allowed a calculator and 2 sides of 8.5×11 in paper with notes.
5. You have 50 min .
6. In the figure below, block 1 has mass m_{1}, block 2 has mass m_{2} (with $m_{2}>m_{1}$), and the pulley (a solid disc), which is mounted on a horizontal axle with negligible friction, has radius R and mass M. When released from rest, block 2 falls a distance d in t seconds without the cord slipping on the pulley. (a) What are the magnitude of the accelerations of the blocks? (b) What is T_{1} ? (c) What is T_{2} ? (d) What is the pulley's angular acceleration? The moment of inertia of a solid disc is $I=\frac{1}{2} M R^{2}$.

7. A flywheel rotating freely on a shaft is suddenly coupled by means of a drive belt to a second flywheel sitting on a parallel shaft (see figure below). The initial angular velocity of the first flywheel is ω, that of the second is zero. The flywheels are uniform discs of masses M_{a} and M_{c} with radii R_{a} and R_{c} respectively. The moment of inertia of a solid disc is $I=\frac{1}{2} M R^{2}$. The drive belt is massless and the shafts are frictionless. (a) Calculate the final angular velocity of each flywheel. (b) Calculate the kinetic energy lost during the coupling process. Hint: if the belt does not slip, the linear speeds of the two rims must be equal.

8. A solid sphere, a solid cylinder, and a thin-walled pipe, all of mass m, roll smoothly along identical loop-theloop tracks when released from rest along the straight section (see figure below). The circular loop has radius R, and the sphere, cylinder, and pipe have radius $r \ll R$ (i.e., the size of the objects may be neglected when compared to the other distances involved). If $h=2.8 R$, which of the objects will make it to the top of the loop? Justify your answer with an explicit calculation. The moments of inertia for the objects are listed below.

$$
I=\left\{\begin{align*}
\frac{2}{5} m r^{2} & \text { sphere } \tag{1}\\
\frac{1}{2} m r^{2} & \text { cylinder } \\
m r^{2} & \text { pipe }
\end{align*}\right.
$$

Hint: consider a single object with $I=k m r^{2}$ to solve the general problem, and evaluate these three special cases only at the end.

4. The rotational inertia (moment of inertia) of a collapsing spinning star drops to $\frac{1}{3}$ its initial value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?

Formula sheet

$$
\begin{aligned}
g & =9.81 \mathrm{~m} / \mathrm{s}^{2} \\
1 \mathrm{~N} & =1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \\
1 \mathrm{~J} & =1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Math:

$$
\begin{aligned}
a x^{2}+b x^{2}+c & =0 \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\sin \alpha \pm \sin \beta & =2 \sin \frac{1}{2}(\alpha \pm \beta) \cos \frac{1}{2}(\alpha \mp \beta) \\
\cos \alpha \pm \cos \beta & =2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta) \\
c^{2} & =a^{2}+b^{2}-2 a b \cos \theta_{a b} \\
\frac{d}{d x} \sin a x & =a \cos a x \quad \frac{d}{d x} \cos a x=-a \sin a x \\
\int \cos a x \mathrm{dx} & =\frac{1}{a} \sin a x \quad \int \sin a x \mathrm{dx}=-\frac{1}{a} \cos a x \\
\sin \theta & \approx \theta \quad \text { small } \theta \quad \cos \theta \approx 1-\frac{1}{2} \theta^{2}
\end{aligned}
$$

1-D motion:

$$
\begin{aligned}
& v(t)=\frac{d}{d t} x(t) \\
& a(t)=\frac{d}{d t} v(t)=\frac{d^{2}}{d t^{2}} x(t)
\end{aligned}
$$

const. acc. \downarrow

$$
\begin{aligned}
x_{f} & =x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2} \\
v_{f}^{2} & =v_{i}^{2}+2 a_{x} \Delta x \\
v_{f} & =v_{i}+a t
\end{aligned}
$$

Projectile motion:

$$
\begin{aligned}
v_{x}(t) & =v_{i x}=\left|\overrightarrow{\mathbf{v}}_{i}\right| \cos \theta \\
v_{y}(t) & =\left|\overrightarrow{\mathbf{v}}_{i}\right| \sin \theta-g t=v_{i y} \sin \theta-g t \\
x(t) & =x_{i}+v_{i x} t \\
y(t) & =y_{i}+v_{i y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

over level ground:
max height $=H=\frac{v_{i}^{2} \sin ^{2} \theta_{i}}{2 g}$

$$
\text { Range }=R=\frac{v_{i}^{2} \sin 2 \theta_{i}}{g}
$$

Force:

$$
\begin{aligned}
\sum \overrightarrow{\mathbf{F}} & =\overrightarrow{\mathbf{F}}_{\mathrm{net}}=m \overrightarrow{\mathbf{a}}=\frac{d \overrightarrow{\mathbf{p}}}{d t} \\
\sum F_{i} & =m a_{i} \quad \text { by component } \\
\overrightarrow{\mathbf{F}}_{c} & =\sum F_{\mathrm{r}}=-\frac{m v^{2}}{r} \hat{\mathbf{r}} \\
f_{k} & =\mu_{k} n \\
F_{s} & =-k x \\
F_{g} & =-m g
\end{aligned}
$$

Work-Energy:

$$
\begin{aligned}
K & =\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m} \\
\Delta K & =K_{f}-K_{i}=W \\
W & =\int F(x) d x=-\Delta U \\
U_{g}(y) & =m g y \\
U_{s}(x) & =\frac{1}{2} k x^{2} \\
F & =-\frac{d U(x)}{d x} \\
K_{i}+U_{i} & =K_{f}+U_{f}+W_{\mathrm{ext}}=K_{f}+U_{f}+\int F_{\mathrm{ext}} d x
\end{aligned}
$$

Momentum, etc.:

$$
\begin{aligned}
x_{\mathrm{com}} & =\frac{1}{M_{\mathrm{tot}}} \sum_{i=1}^{n} m_{i} x_{i}=\frac{m_{1} x_{1}+m_{2} x_{2}+\ldots m_{n} x_{n}}{m_{1}+m_{2}+\ldots m_{n}} \\
v_{\mathrm{com}} & =\frac{1}{M_{\mathrm{tot}}} \sum_{i=1}^{n} m_{i} v_{i}=\frac{m_{1} v_{1}+m_{2} v_{2}+\ldots m_{n} v_{n}}{m_{1}+m_{2}+\ldots m_{n}} \\
F_{\mathrm{net}} & =M_{\mathrm{tot}} a_{\mathrm{com}}=\frac{d p}{d t} \quad p_{\mathrm{tot}}=M_{\mathrm{tot}} v_{\mathrm{com}} \\
\overrightarrow{\mathbf{p}} & =m \overrightarrow{\mathbf{v}} \quad \Delta p=p_{f}-p_{i}=F_{\mathrm{avg}} \Delta t \quad(\Delta p=0 \text { for isolated system })
\end{aligned}
$$

Rotation: we use radians

$$
\begin{aligned}
s & =\theta r \quad \leftarrow \text { arclength } \\
\omega & =\frac{d \theta}{d t}=\frac{v}{r} \quad \alpha=\frac{d \omega}{d t} \\
a_{t} & =\alpha r \quad \text { tangential } \quad a_{r}=\frac{v^{2}}{r}=\omega^{2} r \quad \text { radial } \\
I & =\sum_{i} m_{i} r_{i}^{2} \Rightarrow \int r^{2} d m=k m r^{2} \\
I_{z} & =I_{c o m}+m d^{2} \quad \text { axis } z \text { parallel, dist } d \\
\tau_{n e t} & =\sum_{\vec{\tau}} \vec{\tau}=I \overrightarrow{\boldsymbol{\alpha}}=\frac{d \overrightarrow{\mathbf{L}}}{d t} \\
\overrightarrow{\mathbf{L}} & =\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{r}}=I \overrightarrow{\boldsymbol{\tau}} \mid=r F \sin \theta_{r F} \\
K & =\frac{1}{2} I \omega^{2}=L^{2} / 2 I \\
\Delta K & =\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W=\int \tau d \theta \\
P & =\frac{d W}{d t}=\tau \omega
\end{aligned}
$$

Vectors:

$$
\begin{aligned}
|\overrightarrow{\mathbf{F}}| & =\sqrt{F_{x}^{2}+F_{y}^{2}} \quad \text { magnitude } \\
\theta & =\tan ^{-1}\left[\frac{F_{y}}{F_{x}}\right] \quad \text { direction }
\end{aligned}
$$

$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=\sum_{i=1}^{n} a_{i} b_{i}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \quad|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta
$$

