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Exam III Solution
1. A child throws a ball with an initial speed of 8.00m/s at an angle of 40.0◦ above the horizontal. The ball leaves
her hand 1.00m above the ground and experience negligible air resistance. (a) How far from where the child is
standing does the ball hit the ground? (b) How long is the ball in flight before it hits the ground?

Solution: Let the ball’s starting height be yo, the initial velocity be vi, the launch angle be θ, and the horizontal
distance traveled be d. If we put the origin at ground level where the child stands, such that the ball starts at
coordinates (0, yo), we can use the y(x) equation to find the distance traveled by finding the x coordinate at which
y=0.

y(x) = 0 = yo + x tan θ − gx2

2v2
i cos2 θ

(1)

0 = −gx2 + 2v2
i cos2 θ tan θx+ 2v2

i yo cos2 θ (2)

0 = gx2 − 2v2
i sin θ cos θx− 2v2

i yo cos2 θ (3)

Solving the quadratic and simplifying,
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√
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√
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)
≈ 7.46,−1.03m (6)

Clearly the positive solution is the one we seek, so d=7.46m. The time spent in the air is then easily found from
the x component of the launch velocity:

d = vxt = vi cos θt =⇒ t =
d

vi cos θ
≈ 1.22 s (7)

2. A uniform solid sphere of mass M and radius R rotates with an angular speed ω about an axis through its
center. A uniform solid cylinder of mass M , radius R, and length 2R rotates through an axis running through the
central axis of the cylinder. What must be the angular speed of the cylinder so it will have the same rotational
kinetic energy as the sphere?

Solution: First: we don’t need the length of the cylinder at all. All we need to do is equate the rotational kinetic
energy of the two, with the sphere rotating with ωs and the cylinder at ωc.
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1

2
Icω

2
c =

1

2
Isω

2
s (9)

ωc =

√
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√
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3. Two blocks are connected by a string that goes over an ideal pulley as shown in the figure. Block A has a
mass of 3.00 kg and can slide over a rough plane inclined 30.0◦ to the horizontal. The coefficient of kinetic friction
between block A and the plane is 0.400. Block B has a mass of 2.77 kg. What is the acceleration of the blocks?

θ

ma

mb

Solution: We need free-body diagrams for each mass. Let the x axis run up the ramp for mass A. We will assume
that mass B falls and pulls mass A up the ramp, meaning the acceleration is in the x direction for mass A and
downward for mass B. For mass A do we need to consider a friction force. Since the rope is presumably taut the
entire time of interest, the acceleration is the same for both blocks. For the same reason, the tension applied to
both blocks is the same. Newton’s second law and geometry will suffice to find the acceleration if we neglect the
pulley’s rotational inertia. Along the y direction for either mass, the forces must sum to zero, while along the x
direction, the forces must give the acceleration for each mass.

∑
Fy = 0∑
Fx = max

First consider mass A. The free body diagram above yields the following, noting that the acceleration will be
purely along the −x direction:

∑
Fy = n−mag cos θ = 0∑
Fx = T − f −mag sin θ = maax

From the first equation, we see n=mag cos θ, so f=µkmag cos θ. For mass B,

∑
Fy = T −mbg = −mba =⇒ T = mb(g − a)
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Combining,

T − f −mag sin θ = mbg −mba− µkmag cos θ −mag sin θ = maa (11)

(mb +ma)a = g (mb − µkma cos θ −ma sin θ) (12)

a =

(
mb − µkma cos θ −ma sin θ

ma +mb

)
≈ 0.39m/s2 (13)

4. A record is dropped vertically onto a freely rotating (undriven) turntable. Frictional forces act to bring the
record and turntable to a common angular speed. If the rotational inertia of the record is 0.54 times that of the
turntable, what percentage of the initial kinetic energy is lost?

Solution: The record starts at rest with the turntable rotating with velocity ωi. Afterwards, both rotate together
with velocity ωf . Dropping the record on the turntable is essentially an inelastic rotational collision, so conservation
of angular momentum will relate the two velocities.

Li = Lf (14)

Itωi = (Id + It)ωf (15)

ωf =

(
It

It + Id

)
ωi (16)

The ratio of final to initial kinetic energy is then readily found:

Kf

Ki
=

1
2 (It + Id)ω

2
f

1
2Itω

2
i

=
It

It + Id
(17)

The fraction lost is then

Kf −Ki

Ki
=
Kf

Ki
− 1 =

−Id
It + Id

=
−0.54

1 + 0.54
≈ −0.35 (18)

Approximately 35% of the initial kinetic energy is lost.

5. A string is wrapped around a pulley with a radius of 2.0 cm and no appreciable friction in its axle. The pulley
is initially not turning. A constant force of 50N is applied to the string, which does not slip, causing the pulley to
rotate and the string to unwind. If the string unwinds 1.2m in 4.9 s, what is the moment of inertia of the pulley?

Solution: The distance the string travels ∆x in a time t implies an acceleration a:

∆x =
1

2
at2 (19)

Since the string does not slip, the rotational acceleration of the pulley must match the linear acceleration of the
string divided by the radius of the pulley, α=a/R. A torque balance relates the acceleration to the force present:
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∑
τ = RF = Iα = I

a

R
=⇒ a =

R2F

I
(20)

∆x =
1

2
at2 =

R2F

2I
t2 (21)

I =
R2Ft2

2∆x
≈ 0.20 kg ·m2 (22)



Formula sheet

basics
g = |~afree fall| = 9.81 m/s2 near earth’s surface

sphere V =
4

3
πr3

ax2 + bx2 + c = 0 =⇒ x =
−b±

√
b2 − 4ac

2a

1D & 2D motion
speed = v = |~v| ~vav ≡

∆~r

∆t
~v = lim

∆t→0

∆~r

∆t
≡
d~r

dt

ax = lim
∆t→0

∆vx

∆t
≡
dvx

dt
=

d

dt

(
dx

dt

)
=
d2x

dt2

vx(t) = vx,i + axt

x(t) = xi + vx,it+
1

2
axt

2

v2
x,f = v2

x,i + 2ax∆x

↓ launched from origin, level ground

y(x) = (tan θo)x−
gx2

2v2
o cos2 θo

max height = H =
v2
i sin2 θi

2g

Range = R =
v2
i sin 2θi

g

interactions
∆UG = mg∆x

a1x

a2x
= −

m2

m1

Emech = K + U K =
1

2
mv2

∆Emech = ∆K + ∆U = 0 non-dissipative, closed

∆E = W

∆Uspring =
1

2
k (x− xo)2

P =
dE

dt
general P = Fext,x vx 1D const force

Rotation: we use radians
s = θr ← arclength

ω =
dθ

dt
=
vt

r
α =

dω

dt

at = αr tangential ar = −
v2

r
= −ω2r radial

vt = rω vr = 0

∆θ = ωit+
1

2
αt2 const α

ωf = ωi + αt const α

∆x = rθ v = rω a = rα no slipping

I =
∑
i

mir
2
i ⇒

∫
r2 dm = cmr2 I = mr2 point particle

Iz = Icom +md2 axis z parallel, dist d
~L =~r× ~p = I~ω L = Iω = mvr⊥

K =
1

2
Iω2 = L2/2I

∆K =
1

2
Iω2

f −
1

2
Iω2

i = W =

∫
τ dθ

P =
dW

dt
= τω

τ = rF sin θrF = r⊥F = rF⊥

τnet =
∑

~τ = I~α =
d~L

dt

Ktot = Kcm +Krot =
1

2
mv2

cm +
1

2
Iω2

work
∆Emech = ∆K + ∆U = W ← not closed ∆Uspring =

1

2
k (x− xo)2

P =
dE

dt
P = Fext,x vx one dimension

W =

(∑
~F

)
∆xF constant foce 1D

W =
∑
n

(Fext,x ∆xFn) const nondiss., many particles, 1D

W =

xf∫
xi

Fx(x) dx nondiss. force, 1D

(F s
12)max = µsF

n
12 static Fk

12 = µkF
n
12 kinetic

W = ~F ·∆~rF const non-diss force

W =

~rf∫
~ri

~F(~r) · d~r variable nondiss force

Moments of inertia of things of mass M

Object axis dimension I

solid sphere central axis radius R 2
5
MR2

hollow sphere central axis radius R 2
3
MR2

solid disc/cylinder central axis radius R 1
2
MR2

hoop central axis radius R MR2

point particle pivot point distance R to pivot MR2

rod center length L 1
12
ML2

rod end length L 1
3
ML2

solid regular octahedron through vertices side a 1
10
ma2

Derived unit Symbol equivalent to

newton N kg·m/s2

joule J kg·m2/s2 = N·m
watt W J/s=m2·kg/s3


