University of Alabama
Department of Physics and Astronomy

PH 125 / LeClair
Fall 2017

Exam I

Instructions

1. Solve 3 of 5 problems below. All problems have equal weight.
2. Do your work on separate sheets rather than on the exam.
3. Do not hesitate to ask if you are unsure what a problem is asking for.
4. Show your work for full credit. Significant partial credit will be given.
5. Symbolic solutions give more partial credit than purely numerical ones.
6. You are allowed 2 sides of a standard 8.5×11 in paper and a calculator.
7. A particle sliding down a frictionless ramp of angle θ is to attain a given displacement Δx along the ramp in a minimum amount of time. (a) What is the best angle for the ramp? Hint: find the time in terms of the angle and minimize it. See the formula sheet. (b) What is the minimum time?
8. The position of a particle in meters can be described by $x=10 t-2.5 t^{2}$, where t is in seconds. (a) What is the position of the particle when it changes direction? (b) For the particle in the question above, what is its velocity when it returns to its original $t=0$ position?
9. A hockey puck on a frozen pond is given an initial speed of $20.0 \mathrm{~m} / \mathrm{s}$. The puck always remains on the ice and slides 115 m before coming to rest. Determine the acceleration due to friction between the puck and the ice.
10. A bullet of mass m is fired at velocity v_{i}. It strikes a wooden block of mass M, resulting in a completely inelastic collision in which the bullet ends up embedded in the block. After the collision, block plus bullet move smoothly along a surface with coefficient of kinetic friction μ, giving rise to an acceleration of μg. (a) What is the velocity of the block plus bullet immediately after the collision? (b) How far does the block slide before coming to a stop?
11. A 70 kg person standing on a frictionless surface fires a 0.025 kg arrow horizontally at $100 \mathrm{~m} / \mathrm{s}$. With what velocity does the archer move backwards across the ice after firing the arrow?

Formula sheet

$$
\begin{aligned}
g & =\left|\overrightarrow{\mathbf{a}}_{\text {free fall }}\right|=9.81 \mathrm{~m} / \mathrm{s}^{2} \quad \text { near earth's surface } \\
\Delta \overrightarrow{\mathbf{r}} & =\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i} \\
d & \equiv\left|x_{1}-x_{2}\right| \\
b & \equiv|\overrightarrow{\mathbf{b}}|=\left|b_{x}\right| \quad \text { one dimension } \\
\overrightarrow{\mathbf{r}} & =x \hat{\boldsymbol{\imath}} \quad \text { one dimension } \\
\overrightarrow{\mathbf{b}} & =b_{x} \hat{\boldsymbol{\imath}} \quad \text { one dimension }
\end{aligned}
$$

$$
\text { speed }=v=|\overrightarrow{\mathbf{v}}|
$$

Power	Prefix	Abbreviation
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T

$$
\overrightarrow{\mathbf{v}}_{a v} \equiv \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}
$$

$$
\overrightarrow{\mathbf{v}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t} \equiv \frac{d \overrightarrow{\mathbf{r}}}{d t}
$$

Math:

$a x^{2}+b x^{2}+c=0 \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
a_{x, a v} \equiv \frac{\Delta v_{x}}{d t}
$$

$$
a_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t} \equiv \frac{d v_{x}}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}
$$

$\sin \alpha \pm \sin \beta=2 \sin \frac{1}{2}(\alpha \pm \beta) \cos \frac{1}{2}(\alpha \mp \beta)$
$\cos \alpha \pm \cos \beta=2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)$

$$
v_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \equiv \frac{d x}{d t}
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos \theta_{a b}$

$$
x_{f}=x_{i}+v_{x, i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2}
$$

$\frac{d}{d x} \sin ^{n}(a x)=a n \cos (a x) \sin ^{n-1}(a x)$

$$
v_{x, f}=v_{x, i}+a_{x} \Delta t
$$

$\frac{d}{d x} \cos ^{n}(a x)=-a n \sin (a x) \cos ^{n-1}((a x))$

$$
x(t)=x_{i}+v_{x, i} t+\frac{1}{2} a_{x} t^{2}
$$

$$
v_{x}(t)=v_{x, i}+a_{x} t
$$

$\frac{d}{d x} \frac{1}{\sqrt{\sin (a x)}}=-\frac{a \cos (a x)}{2 \sin ^{3 / 2}(a x)} \quad$ oddly specific information

$$
v_{x, f}^{2}=v_{x, i}^{2}+2 a_{x} \Delta x
$$

$$
\begin{aligned}
\Delta \overrightarrow{\mathbf{p}} & =\overrightarrow{\mathbf{0}} \quad \text { isolated system } \\
\overrightarrow{\mathbf{p}}_{f} & =\overrightarrow{\mathbf{p}}_{i} \quad \text { isolated system } \\
\overrightarrow{\mathbf{p}} & \equiv m \overrightarrow{\mathbf{v}} \\
m_{u} & =-\frac{\Delta v_{s, x}}{\Delta v_{u, x}} m_{s} \\
\overrightarrow{\mathbf{J}} & =\Delta \overrightarrow{\mathbf{p}} \\
\Delta E & =0 \quad \text { isolated system } \\
K & =\frac{1}{2} m v^{2} \\
\vec{v}_{12} & =\overrightarrow{\mathbf{v}}_{2}-\overrightarrow{\mathbf{v}}_{1} \quad \text { relative velocity } \\
v_{12} & =\left|\overrightarrow{\mathbf{v}}_{2}-\overrightarrow{\mathbf{v}}_{1}\right| \quad \text { relative speed }
\end{aligned}
$$

