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Problem Set 5 Solutions

1. A tall, cylindrical chimney falls over when its base is ruptured. Treat the chimney as a thin rod
of length l. At the instant it makes an angle θ with the vertical as it falls, what is the tangential
acceleration of the top? The moment of inertia of a rod about its end point is 1

3ml
2.

Solution: Though it may not seem obvious at first, an energy-based approach is somewhat easier
in this case. First things first. When the chimney falls, any point along its length a distance r from
the base will describe circular motion with radius r. Therefore, all we need to consider is circular
motion, albeit with a varying angular acceleration.

We already know the radial (normal; ar) and tangential (at) components of acceleration required
for circular motion in terms of the linear velocity v, angular velocity ω = dθ/dt = v/r, angular
acceleration α=d2θ/dt2, and distance from the circle’s center:

at = d2s

dt2
= rα

ar = v2

r
= rω2

Here s is the length of the path covered by a particular point throughout the motion. For circular
motion at radius r through an angle θ, this is just the arc length s=θr. We will need both α and
ω to find at and ar. We can find ω from conservation of energy, and differentiate it with respect to
time to find α.

Let the chimney have length l, and define the ŷ direction to be vertical with the origin at the
base of the chimney. If the chimney falls through an angle θ relative to the vertical, its center of
mass will have gone from a height y = l/2 to y = (l/2) cos θ. The change in the center of mass
height ∆ycom gives a change in gravitational potential energy, which must be equal to the gain in
rotational kinetic energy. With I as the moment of inertia of the chimney,

mg∆ycom = 1
2mgl (1− cos θ) = 1

2Iω
2

The moment of inertia of the chimney is that of a thin rod of length l and mass m rotating a
distance l/2 from its center of mass:

I = Icom +m

(
l

2

)2
= 1

12ml
2 + 1

4ml
2 = 1

3ml
2



Putting this all together, we can find ω2, which will give us ar.

ω2 = mgl

I
(1− cos θ) = 3g

l
(1− cos θ)

We are interested in the accelerations at the very end of the chimney, which is thus rotating at a
distance l from the base of the rod. The radial acceleration is then

ar = rω2 = lω2 = 3g (1− cos θ) ≈ 5.32m/s2

Since we know ω, we can straightforwardly find α and therefore at. It is somewhat easier to
implicitly differentiate ω2 as given above and apply the chain rule:

d
(
ω2)
dt

= 2ωdω
dt

= 2ωα = 3g
l

sin θdθ
dt

= 3gω
l

sin θ

2ωα = 3gω
l

sin θ

α = 3g
2l sin θ

Given α, we can find at:

at = lα = 3g
2 sin θ ≈ 8.44m/s2

Finally, we want to know the angle at which the tangential acceleration equals the gravitational
acceleration at the end of the chimney, at=g. No problem:

at = g = 3g
2 sin θ θ = sin−1 2

3 ≈ 42◦

At this point, the end of the chimney is “falling faster than free-fall.” At this point, it would be
safer to jump off of the chimney . . .

We should be able to solve the problem with torque as well. It is really not that much harder in
the end, and arguably just as straightforward. First: the only torque is due to the weight of the
chimney acting at a distance l/2 from the center of mass. The force is ~F =−mg ŷ, and a vector
pointing from the center of rotation to the point of its application is ~r=(l/2) sin θ ı̂ + (l/2) cos θ ̂.
Or, if you like, the angle between~r and ~F is θ, |~r|= l/2, and |~F|=mg since we only need magnitudes.
In any case: this torque must give Iα:

Iα = τnet =~r× ~F = |~r||~F| sin θ = − l2mg sin θ

α = − l

2Img sin θ = −3g
2l sin θ



The torque is negative, consistent with its tending to cause a clockwise rotation of the chimney.
Using the torque method, you arrive at an expression for α identical to the one above derived using
energy. At this point, you might still want to find ω. You can do that by equating the work done
by the torque τ acting through an angle θ to the increase in kinetic energy:

W =
θf∫
θi

τ dθ = 1
2Iω

2

The integral is simple, and its limits are from the initial vertical configuration (θi=0) to the final
angle of interest (θf ). You can verify that this yields the same expression for ω2 as above.

Two different approaches, same answer, as it has to be. It is sometimes just a matter of taste,
memory, and minimizing pain that determines which method to use.

2. A wheel is rotating freely at angular speed 800 rev/min on a shaft. The shaft has negligible
rotational inertia. A second wheel, initially at rest and with twice the rotational inertia of the
first wheel, is suddenly coupled to the same shaft. (a) What is the angular speed of the resultant
combination of the shaft and the two wheels? (b) What fraction of the original rotational kinetic
energy is lost?

3. In the figure below, a small, solid, uniform ball is to be shot from point A so that it rolls
smoothly along a horizontal path, up a ramp, and onto a plateau. Then it leaves the plateau
horizontally to land on a game board, a horizontal distance d from the right edge of the plateau.
The vertical heights are h1 =5.00 cm and h2 =1.60 cm. With what speed must the ball be shot at
point A for it to land at d=6.00 cm? The moment of inertia of a solid sphere is 2

5mR
2.

h1
h2

d
A

B

C

Solution: Solution: Our sphere starts out at point A in the sketch below already undergoing
smooth rolling motion, with center of mass velocity vi. Since the sphere rolls without slipping,
its angular and linear velocities must be related by the sphere’s radius R, vi = Rω. We can
apply conservation of mechanical energy to find the sphere’s velocity at point B. Let the zero of
gravitational potential energy be the lowest level in the diagram (the height of point A). At A, the
total mechanical energy is purely kinetic, with both linear and rotational terms:

KA + UA = 1
2mvi + 1

2Iω
2
i = 1

2mvi + 1
2I
v2
i

R
= 1

2v
2
i

(
m+ I

R2

)
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h2

d
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B

C

At point B, we also have translational and rotational kinetic energy, characterized by linear and
angular velocities vb and ωb, respectively. We still have vb=Rωb, since the motion is purely rolling
without slipping. We also have now a gravitational potential energy mgh1, and

KB + UB = 1
2v

2
b

(
m+ I

R2

)
+mgh1

Applying conservation of energy between A and B, we can solve for vi:

KA + UA = KB + UB

1
2v

2
i

(
m+ I

R2

)
= 1

2v
2
b

(
m+ I

R2

)
+mgh1

v2
i = v2

b + 2mgh1
m+ I/R2

We need only an expression for vb. At point B, the sphere is launched from height h2 above the
far right platform, and it behaves just as any other projectile. In the absence of air resistance, the
rate of rotation ω will not change from B to C, and we can therefore ignore the rotational motion.
The sphere covers a horizontal distance d in a time t after being launched horizontally at vb, and
it covers a vertical distance h2 in the same time t under the influence of gravity. Thus,

d = vbt

−h2 = −1
2gt

2

=⇒ vb = d

√
g

2h2

Using this result in our expression above, and noting I= 2
5mr

2 for a solid sphere,

v2
i = v2

b + 2mgh1
m+ I/R2 = d2g

2h2
+ 2mgh1
m+ I/R2

v2
i = d2g

2h2
+ 2mgh1

m+ 2
5m

= d2g

2h2
+ 2gh1

7
5

= d2g

2h2
+ 10

7 gh1

vi =

√
d2g

2h2
+ 10

7 gh1 ≈ 1.34m/s



4. A (spherical) star of radius R = 5 × 105 km has a rotational period of 60 days. Later in its
life, its radius expands to R = 5× 106 km, though its mass M remains constant. What is the new
rotational period after expansion? Presume the star’s moment of inertial is kMR2 at all times.

Solution: We can’t readily use conservation of energy here, because to do so we’d have to account
for the energy it took to accomplish the expansion. One thing we can rely on, however, is conser-
vation of angular momentum. Both before and after, the angular momentum L=Iω should be the
same. We only need to know the relationship between angular velocity ω and period T . In one
period T , the star rotates through 2π radians at angular velocity ω, so it must be the case that

ω = ∆θ
∆t = 2π

T
(1)

Presuming the star’s mass remains constant and only its radius changes, conservation of angular
momentum gives

Iiωi = Ifωf (2)

kMR2
iωi = kMR2

fωf (3)

R2
i

(2π
Ti

)
= R2

f

(
2π
Tf

)
(4)

Tf =
(
Rf
Ri

)2
Ti = 6000days (5)

5. A small body of mass m hangs in equilibrium at one end of a light string of length l, the upper
end of which is fixed. A small body of mass m moving horizontally with velocity 2

√
gl strikes the

former body and adheres to it. Find:

(a) the velocity with which the combined bodies begin to move,
(b) the angle through which the string turns before coming to rest for an instant,

Solution: Conservation of momentum will get us the velocity after the collision.

mvi = 2m
√
gl = 2mvf =⇒ vf =

√
gl (6)

If the string turns through an angle θ, its endpoint is now a distance l cos θ from the vertical plane
from which it hangs, rather than a distance l away as it is before the collision. The mass has
then risen by an amount l−l cos θ. The maximum angle will be determined by the balance of the
potential energy gained by moving through this height and the original kinetic energy after the
collision.



1
2 (2m) v2

f = 2mg∆y (7)

mgl = 2mgl (1− cos θ) (8)

2− 2 cos θ = 1 (9)

cos θ = 1
2 (10)

θ = 60◦ (11)

6. A wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and
radius R as shown below. The cylinder is initially at rest and mounted on a fixed horizontal axle
that runs through its center of mass. The line of motion of the projectile is perpendicular to the
axis and at a distance d<R from the center. Find the angular speed of the system just after the
clay strikes and sticks to the surface of the cylinder. The moment of inertia of a solid cylinder is
I= 1

2MR2, the moment of inertia of a point particle mass m a distance R from an axis of rotation
is I=mR2.

R

M

d

m vi

Solution: Clearly this is an inelastic collision, since the wad of clay sticks to the cylinder, and
conservation of energy is right out. Conservation of momentum is fine, but the cylinder rotates after
the collision and makes things difficult. Conservation of angular momentum will be a whole lot
easier. Since we must eventually find the angular velocity of the cylinder, it is natural to consider
angular momentum about the center of the cylinder.i

Consider first the moment just before the wad hits the cylinder. The wad has momentum p=mv,
acting at a distance R from the center of the cylinder. The angular momentum about the center of
the cylinder is the wad’s linear momentum times the perpendicular distance to the axis of rotation,
which is just d. The angular momentum about the center of the cylinder is thus Li=mvd.

After the wad hits the cylinder and both begin to rotate with angular velocity ω, the angular
momentum can be found from the moments of inertia and ω. We have the wad, with Iw =mR2,
and the cylinder, with Ic= 1

2MR2, both rotating with angular velocity ω, and thus the total angular
iIt does not really matter, angular momentum will be conserved regardless of our choice of origin. Choosing the

center of the cylinder is simply more convenient.



momentum after the collision is

Lf = Iwω + Icω = mR2ω + 1
2MR2ω = R2ω

(
m+ 1

2M
)

Equating initial and final angular momentum, we can easily find ω:

R2ω

(
m+ 1

2M
)

= mvd

ω = mvd

R2
(
m+ 1

2M
)

7. A uniform disk with mass M = 2.5 kg and radius R= 20 cm is mounted on a fixed horizontal
axle, as shown below. A block of mass m = 1.2 kg hangs from a massless cord that is wrapped
around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of
the disk, and the tension in the cord. Note: the moment of inertia of a disk about its center of
mass is I= 1

2MR2.

m

M

Solution: In order to get acceleration and angular acceleration, we’ll need to use force and torque,
respectively. Start with the pulley. The tension T in the rope pulls on the edge of the disk a
distance R from the center of rotation at an angle of θRT = 90◦, which causes a torque τ . This
torque must equal the disk’s moment of inertia times the angular acceleration.

τ = RT sin θRT = RT = Iα = 1
2MR2α (12)

α = 2T
MR

(13)

We can get the tension by considering the force balance for the hanging mass. We have the tension
in the tope pulling up, the weight of the mass pulling down, and an overall acceleration downward.
Thus

∑
F = T −mg = −ma (14)



Noting that a=Rα, this gives T =mg−MRα. Now we’ve got two equations for α, which we can
combine.

α = 2T
MR

= 2
MR

(mg −mRα) = 2mg
MR

− 2m
M

α (15)
2mg
MR

= α

(
1 + 2m

M

)
(16)

α = 2mg
R (M + 2m) ≈ −24 rad/s2 (17)

Given α, we can find a and T .

a = Rα = 2mg
M + 2m ≈ −4.8m/s2 (18)

T = mg −MRα = mg − 2m2g

M + 2m = mg

(
1− 2m

M + 2m

)
= g

(
mM

M + 2m

)
≈ 6.0N (19)

8. A bowler throws a bowling ball of radius R along a lane. The ball slides on the lane with initial
speed vo and initial angular speed ωo = 0. The coefficient of kinetic friction between the ball and
the lane is µk. The kinetic frictional force ~fk acting on the ball causes a linear acceleration of the
ball while producing a torque that causes an angular acceleration of the ball. When the center of
mass speed vcm has decreased enough and angular speed ω has increased enough, the ball stops
sliding and then rolls smoothly. (a) What then is the center of mass speed vcm in terms of ω?
During the sliding, what are the ball’s (b) linear acceleration and (c) angular acceleration? (d)
How long does the ball slide? (e) How far does the ball slide? (f) What is the linear speed of the
ball when smooth rolling begins?

Solution: (a) Initially, the bowling ball is purely sliding, and as friction takes hold, the ball begins
to roll. During the pure sliding phase, the ball rotates about its center of mass, independent of the
overall center of mass motion.
After sufficient time, the rolling motion “catches up” with the sliding motion, and the ball begins
to roll - it is no longer spinning about its center of mass, rolling smoothly. This smooth rolling
is equivalent to a rotation about a point on the surface of the ball (not the center of mass), and
as we derived earlier, this means that at the point we have smooth rolling motion, center of mass
velocity and angular velocity are simply related:

vcom = rω

Here r is the given radius of the ball. During the sliding phase, we should write vcom > rω. The
angular velocity is not high enough for the ball to “catch" on the lane. ii

(b) During the sliding phase, rotation is irrelevant to the dynamics - it is just like any other sliding
iiMy parents used to own a bowling alley. I can go into much more detail on this problem for the curious.



object we have analyzed. A force of kinetic friction acts at the interface between the ball and the
lane, which is equal in magnitude to fk =µkFN , where µk is the coefficient of kinetic friction and
FN =mg the normal force. Since this is the only force acting, we can easily apply Newton’s law:

∑
F = ma = −fk

a = −fk/m = −µkg

(c) The angular acceleration α during the sliding phase is also provided by the friction force fk.
The friction force acts at a distance r from the center of mass, and at a right angle to a radius
drawn from the center of mass to the intersection between the ball and lane. Thus, fk also provides
a torque τ , and as the only torque present, it must equal the moment of inertia of the ball times
the angular acceleration. Noting I= 2

5mr
2 for a solid sphere,

τnet = rfk = Iα = 2
5mr

2α

α = rfk
2
5mr

2 = 5µkmg
2mr = 5µkg

2r

(d) During the sliding phase, the rotational and translational motion are essentially decoupled, and
we can consider the center of mass motion from the point of view of standard kinematics. That is,

vcom(t) = vcom(0) + at = vcom(0)− µkgt

Here vcom(0) is the initial center of mass velocity, and we imply t= 0 at the moment the ball hits
the lane. The same is true for the rotational motion, with the added simplification that the initial
angular velocity is zero:

ω(t) = ω(0) + αt =
(5µkg

2r

)
t

Say that the sliding stops at a time to. At the moment that sliding stops, we know that vcom(to)=
rω(to). This yields to, the time it takes to stop sliding, in terms of known quantities:

vcom(to) = rω(to)

vcom(0)− µkgto = 5
2µkgto

to

(5
2µkg + µkg

)
= vcom(0)

to = vcom(0)
7
2µkg

= 2vcom(0)
7µkg

(e) Given the time to stop sliding, we can also find the distance covered d by standard kinematics:



d = vcom(0)to + 1
2at

2
o

= vcom(0)
(2vcom(0)

7µkg

)
− 1

2µkg
(2vcom(0)

7µkg

)2

= 2 [vcom(0)]2

7µkg
− 2 [vcom(0)]2

49µkg

= 12 [vcom(0)]2

49µkg

(f) The linear (i.e., center of mass) speed at the moment sliding stops is also just kinematics:

vcom(to) = vcom(0)+at = vcom(0)−µkgt = vcom(0)−µkg
2vcom(0)

7µkg
= vcom(0)−2

7vcom(0) = 5
7vcom(0)

The linear velocity at the onset of rolling motion is 5/7 the initial velocity, independent of the
coefficient of friction - only the moment of inertia comes into play.

9. A torque τ acts on a body and rotates it about a fixed axis from angle θi to angle θf . (a) Prove
that the work done is

W =
θf∫
θi

τ dθ (20)

(b) Show that the rate at which work is done, power, is

P = dW

dt
= τω (21)

Solution: It is easiest to start with part (b), and we can use that result to prove (a). First, we
note that since ∆K=W , it is true that dW/dt=dK/dt. We also know what the rotational kinetic
energy is, K= 1

2Iω
2. We will presume the moment of inertia I is constant.

dW

dt
= dK

dt
= d

dt

(1
2Iω

2
)

= Iω
dω

dt
= Iωα = ωτ (22)

Given that,

dW

dt
= ωτ = τ

dθ

dt
(23)

Integrating both sides with respect to t produces the desired result.

10. (a) Starting from ~F = d~p
dt , show that d~L

dt =~r × ~F =~τ . (b) Show that if there is no external



force, angular momentum is conserved.


