UNIVERSITY OF ALABAMA Department of Physics and Astronomy

PH 125 / LeClair

Fall 2014

Problem Set 6

Instructions:

- 1. Answer all questions below. Show your work for full credit.
- 2. All problems are due by the end of the day on 7 Nov 2014.
- 3. You may collaborate, but everyone must turn in their own work.

1. With strong inspiratory effort, the gauge pressure in the lungs can be reduced to about 10^4 Pa. Molasses has a density of about 1.4×10^3 kg/m³. (a) What is the greatest height that molasses can be sucked up a straw? (b) What is the greatest height if the pressure could be reduced to zero?

2. (a) Calculate the gauge pressure inside a spherical bubble of radius 8×10^{-5} m located in a water tank 15 m below the surface of the water. (b) How about if there is a 5 m layer of oil of density 500 kg/m^3 on top of the water?

3. Consideration of the gravitational, buoyant, and viscous forces on a sphere falling in a fluid leads to this expression for terminal velocity:

$$v_t = \frac{2}{9} \frac{r^2 g}{\eta} \left(\rho_s - \rho_l \right) \tag{1}$$

(a) If the viscous force on the sphere is given by Stoke's law, $F_v = 6\pi\eta rv$, derive the expression above. (b) Two spheres of the same size but differing density have terminal velocities in the same medium in the ratio of 9 to 1. If the slower has a density twice that of water, what is the density of the faster sphere?

4. An ideal fluid flows in a tube which constricts and drops. It starts out going through an inlet of area A_1 at velocity v_1 with pressure P_1 , and goes through a lower outlet of area A_2 at velocity v_2 with pressure P_2 . What must h be in order that the pressure in the fluid at the bottom P_2 equals the pressure at the top P_1 ?

5. The space shuttle releases a 470 kg satellite while in an orbit 280 km above the surface of the earth. A rocket engine on the satellite boosts it to a geosynchronous orbit. How much energy is required for the orbit boost? (Note: the earth's radius is 6378 km, its mass is 5.98×10^{24} kg, and $G = 6.67 \times 10^{-11} N \cdot m^2 kg^{-2}$. Hint: "geosynchronous" means the satellite's period T is 24 hrs.)

6. Calculate the mass of the Sun given that the Earth's distance from the Sun is 1.496×10^{11} m. (Hint: you already know the period of the Earth's orbit.)

7. The free-fall acceleration on the surface of the Moon is about one sixth of that on the surface of the Earth. If the radius of the Moon is about $0.250 R_E$, find the ratio of their average densities, $\rho_{\text{Moon}}/\rho_{\text{Earth}}$.

8. A satellite is in circular orbit around a spherical asteroid, at an altitude of 100 km above the surface, moving at a uniform speed of 80 m/s. If the asteroid has a radius of 321 km, what is the mass of the asteroid?

9. In the figure below, a spherical planet has a spherical hole carved out of it. The planet has radius R and density ρ , while the hole has radius R/2, such that the hole 'touches' both the center of the planet and its surface. What is the gravitational force on a body of mass m sitting on the planet's surface where the hole 'touches' the surface? *Hint: think of the problem as a superposition of the forces of two different masses lying on top of one another.*

