University of Alabama
 Department of Physics and Astronomy

PH 125 / LeClair

Problem Set 6

Instructions:

1. Answer all questions below. Show your work for full credit.
2. All problems are due by the end of the day on 7 Nov 2014.
3. You may collaborate, but everyone must turn in their own work.
4. With strong inspiratory effort, the gauge pressure in the lungs can be reduced to about $10^{4} \mathrm{~Pa}$. Molasses has a density of about $1.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. (a) What is the greatest height that molasses can be sucked up a straw? (b) What is the greatest height if the pressure could be reduced to zero?
5. (a) Calculate the gauge pressure inside a spherical bubble of radius $8 \times 10^{-5} \mathrm{~m}$ located in a water tank 15 m below the surface of the water. (b) How about if there is a 5 m layer of oil of density $500 \mathrm{~kg} / \mathrm{m}^{3}$ on top of the water?
6. Consideration of the gravitational, buoyant, and viscous forces on a sphere falling in a fluid leads to this expression for terminal velocity:

$$
\begin{equation*}
v_{t}=\frac{2}{9} \frac{r^{2} g}{\eta}\left(\rho_{s}-\rho_{l}\right) \tag{1}
\end{equation*}
$$

(a) If the viscous force on the sphere is given by Stoke's law, $F_{v}=6 \pi \eta r v$, derive the expression above. (b) Two spheres of the same size but differing density have terminal velocities in the same medium in the ratio of 9 to 1 . If the slower has a density twice that of water, what is the density of the faster sphere?
4. An ideal fluid flows in a tube which constricts and drops. It starts out going through an inlet of area A_{1} at velocity v_{1} with pressure P_{1}, and goes through a lower outlet of area A_{2} at velocity v_{2} with pressure P_{2}. What must h be in order that the pressure in the fluid at the bottom P_{2} equals the pressure at the top P_{1} ?
5. The space shuttle releases a 470 kg satellite while in an orbit 280 km above the surface of the earth. A rocket engine on the satellite boosts it to a geosynchronous orbit. How much energy is required for the orbit boost? (Note: the earth's radius is 6378 km , its mass is $5.98 \times 10^{24} \mathrm{~kg}$, and $G=6.67 \times 10^{-11} N \cdot m^{2} \mathrm{~kg}^{-2}$. Hint: "geosynchronous" means the satellite's period T is 24 hrs .)
6. Calculate the mass of the Sun given that the Earth's distance from the Sun is $1.496 \times 10^{11} \mathrm{~m}$. (Hint: you already know the period of the Earth's orbit.)
7. The free-fall acceleration on the surface of the Moon is about one sixth of that on the surface of the Earth. If the radius of the Moon is about $0.250 R_{E}$, find the ratio of their average densities, $\rho_{\text {Moon }} / \rho_{\text {Earth }}$.
8. A satellite is in circular orbit around a spherical asteroid, at an altitude of 100 km above the surface, moving at a uniform speed of $80 \mathrm{~m} / \mathrm{s}$. If the asteroid has a radius of 321 km , what is the mass of the asteroid?
9. In the figure below, a spherical planet has a spherical hole carved out of it. The planet has radius R and density ρ, while the hole has radius $R / 2$, such that the hole 'touches' both the center of the planet and its surface. What is the gravitational force on a body of mass m sitting on the planet's surface where the hole 'touches' the surface? Hint: think of the problem as a superposition of the forces of two different masses lying on top of one another.

