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Laboratory 1: Uncertainty Analysis

Hypothesis: A statistical analysis including both mean and standard deviation can reveal whether
a set of cards is “stacked” or not, even without seeing all the cards.
Goals: Understanding of uncertainty and basic statistical quantities, comparisons of data sets,

visualization of data.

1 Introduction

In this exercise we are interested in learning how to correctly analyze data. The main point here
is that any time one measures a quantity, one must be able to tell the accuracy of this quantity.
Otherwise, there is no way to tell whether the number agrees with the predictions of a theory, and

there is no way for another scientist to check the experiment.

For example, suppose I measure the circumference of a circle, then its diameter, and divide the
circumference by the diameter. The result ought to be w. If my result is 3.15, have I proved
that 7 is not 3.147 In this case, of course, we know the accepted result. If the uncertainty of my

measurement is 0.01 or more, then my result is consistent with the value that we are familiar with.

No matter how many measurements of a quantity we make, we will never know its true value. If
we make a large number of measurements under nominally identical conditions, then the average
of this collection of measurements gives us an estimate of the true value. We might logically expect
that the more measurements we make, the better our estimate of the true value. In some cases,
the underlying statistics of the randomness in the measurements allows us to determine how far
our estimate is from the true value. Repeated measurements of independent, random events occurs
often in physics, and the goal of this laboratory is to learn how to analyze such experiments using

processes more familiar to everyday life.

What we will first explore in this laboratory are data analysis techniques that will allow you to
determine, from a series of measurements, what the uncertainty in the measured quantity is. In a

follow-up experiment, we will learn how to analyze data that appear to follow a linear relationship.

1.1 Standard Deviation

Suppose a series of measurements is made of the value of some unknown quantity. Usually these

measured values will not all be the same. A statistical analysis of the measured values estimates
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the quantity and its variability. Analysis of the uncertainty determines the probability that the
“true” value lies within a certain range. Of course, the percent difference between two measured
values gives some idea of the range of measured values to be expected, but this is not a very reliable
indicator. Whenever a measurement is reported, a determination of the reliability of a
measurement is equally important to report. The mathematical methods used to determine

statistical uncertainty are commonly referred to as uncertainty analysis.

A mathematically complete treatment of error analysis is beyond the scope of this course, but is nec-
essary to understand the basic methods of uncertainty analysis to properly report the results of our
the experiments. Some starting assumptions are useful to estimate the uncertainties encountered
in the measurements and analysis of data. First, it is assumed that differences in measurements are
due to small random fluctuations that are just as likely to make the measurement higher as it is to
make it lower. Second, in some cases there is a systematic error which always makes a measurement
smaller or larger than the “true” value. Examples of systematic errors include parallax in reading
a meter stick, friction in balance or meter bearings, tightening of a micrometer screw too much,

failure to account for air resistance, etc.

In well-designed experiments, systematic errors are accounted for, noted and measured. Under
these conditions, a very large number of measurements of the same quantity should distribute
themselves symmetrically about the simple arithmetic mean or average, which is the “best” value
of the quantity. The expected variations of the measurements can be described by a quantity called

the “standard deviation”

The standard deviation is computed in a straightforward manner. Suppose the quantity x is
measured n times. The measured values are labelled z1, xs, ...x,. First, we calculate the mean,

or average of all the values, denoted Z. This is just as you would expect:

T:*Zl'i (1)

Next, for each measurement, calculate the difference from the mean, x; — T and square the result:
(z; — 5)2. Add the squared deviations together, divide by the number of measurements n, and take

the square root of the result{]

o= ! Zn: (z; — ) )

n_lizl

"We are ignoring the distinction between population and sample standard deviation here. While it is an important
conceptual point, for the amount of data we are going to take the operational difference is nil.
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A sneaky, and somewhat less tedious formula is given by

n n 2
i S () ®)
=1 =1

The advantage of this second formula is that we may calculate simple sums of our data, rather than

differences for every measurement [

A large standard deviation indicates that the data points are spread far from the mean, while a
small standard deviation indicates that they are clustered closely around the mean. The standard
deviation of a group of measurements gives an indication of the precision of those measurements,
and the expected range within which subsequent measurements will fall. When deciding whether
measurements agree with a theoretical prediction, the standard deviation of those measurements is
of crucial importance: if the mean of the measurements too many standard deviations away from

the prediction, then the theory being tested probably needs to be revised.

1.1.1 Standard deviation and distribution of data about the mean

When performing a series of measurements, any given observation is rarely more than a few standard
deviations from the mean. A mathematical result known as Chebyshev’s inequality tells us, for all
distributions in which standard deviation can be meaningfully defined, the number of measurements
we expect within a certain number of standard deviations of the mean, summarized in the table

below.

minimum population in range distance from mean expected frequency outside range

50% +v/20 1in 2
75% +20 1in4
89% +30 1in 10
94% +40 3 in 50
96% +50 1in 25
97% +60 3 in 100

Table 1: Minimum expected fraction of the data lying within a certain number of standard deviations for an arbitrary
distribution.

According to this result, there is a 75% probability that any additional measurement made of the
quantity z will lie within +20 of the mean and a 94% probability that it will lie within +40 of
the mean. In most of the experiments of this course, measurements are repeated about five or

ten times. Using the above analysis for less than five independent measurements of a quantity is

"The sneaky formula is based on the identity > (z: —Z)=) ai—(>_"_, 27)/n.
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generally not considered to be reliable.

This result is quite general, and in fact rather conservative. If we know that our data should follow
a particular distribution, such as the normal distribution (Gaussian or “bell curve” distribution),
the constraints can be even more stringent. The table below shows the expected fraction of data

within a certain number of standard deviations for data following a normal distribution.

population in range distance from mean expected frequency outside range

50% +0.6740 1in 2
68% +lo 1in 3
90% +1.6450 1in 10
95.4% +20 1in 22
99.7% +30 1 in 370
99.994% +40 1 in 16000
99.99994% +50 1 in 1,700,000

Table 2: Minimum expected fraction of the data lying within a certain number of standard deviations for a normal (bell curve)
distribution.

The central limit theorem of statistics says that the distribution of an average of many indepen-
dent, identically distributed random measurements tends toward the famous bell-shaped normal
distribution. This is most often the situation in our laboratory experiments, and we will typically
assume it to be the case. The normal distribution is strongly peaked about the mean, making it
very unlikely to see measurements more than a 2 or 3 standard deviations from the mean. For
example, if one observes an event which occurs once per day, a 40 event occurs every 43 years, a

50 event occurs only once every 5000 years, and a 60 event only once every 1.5 million years!

1.2 Relationship of mean and standard deviation

The standard deviation is a measure of the random statistical uncertainty in a set of measurements,
and it becomes part of the experimental error associated with a measurement. If you have measured
an average to be 695 with 0 =26, and another experimenter has measured a count of 680, then their
count agrees with your count, within the statistical uncertainty. Nothing is made of the difference
between the values 695 and 680 because, in all probability, the two results are the same since they
differ by less than o.

This is not the only sort of uncertainty we are interested in, however. If we make repeated measure-
ments of a quantity, we would expect that the more measurements we take the more accurate our
mean becomes. This makes some sense - we would expect that our average after 100 measurements
should be much more accurate than our average after only 10. What we are really asking is how
close is the mean value we have measured to the true mean, determining which would require an

infinite number of measurements. The quantity, oz known as the standard deviation of the mean,
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tells us how far our measured mean should be from the true value. This quantity tells you that if
you measure x repeatedly, the sample mean T itself has an uncertainty oz compared to the true

mean u, given by:

A (1)
where again n is the number of measurements. Thus, the more measurements you perform, the
smaller the uncertainty in the mean value of your measurements. The uncertainty is reduced as
1/4/n, which will never reach zero, but it can be reduced to an arbitrarily small value simply by
taking more measurements. Of course, this only works if you have arbitrary amounts of time —
while your accuracy increases as 1/y/n, the amount of time your measurement takes grows more
quickly (as m), so you are fighting a losing battle!

Put another way, if you are primarily interested in the average value of x, then oz tells you the
uncertainty in that averag The standard deviation of the mean is the typical manner of reporting

average quantities with statistical uncertainty:

(best value of ) =T + oz (68% confidence if normally distributed) (5)

Whether one reports +oz, +30%, or even +507 as the margin of uncertainty varies from discipline

to discipline. In the present experiment, we will use £o3.

2 Example: is the deck stacked?

As an everyday example of how standard deviation can be used, we will consider the following prob-
lem: how could we tell whether or not a deck of playing cards is legitimate without seeing all of
the cards? Making the problem more concrete, we will imagine that we have a collection of several
decks of cards shuffled together (say, 4 decks), used to play a two-person game of poker. During
this game, ten cards are dealt and counted, and then returned to the deck which is thoroughly
shuffled. Seeing only 10 cards at a time, could we determine if the deck is legitimate? Moreover, is

there a technique which would work no matter how many decks are shuffled together?

First, we must find a way to quantify the cards. We will number the cards ace through king with the
numbers 1 through 13. The numbered cards simply have their face value, and we assign Ace = 1,
Jack = 11, Queen = 12, King = 13. In a normal deck of cards, there are an equal number of each

type of card, so you can quickly convince yourself that after enough deals, the average value of all

lipor data following a normal distribution (bell curve), the standard deviation o tells you that 68% of subsequent
measurements will fall within +¢ of the mean Z, whereas the standard deviation of the mean oz tells you that a
collection of measurements has a 68% chance of yielding a mean of Z.
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cards seen should be T="7. We really just need to average over the 13 cards in one suit, since each

of the four suits in the deck have the same numbers, and all decks shuffled together are the samef"]

18 14+24+344+5+6+7+84+9+10+11+12+13
Tsuit = Tdecks = == Zz SR i e i L 7 legitimate deck
13 &~ 13

Let’s say someone removed all of the aces. With our numbering scheme (Ace = 1), we now have
fewer low cards, so the average will be a bit too high (note also that there are only 12 cards per

suit now, 2 through King):

_ _ 1 & 243+4+45+6+T7+8+9+10+11+12+13 ‘
Zsuit = Tdecks = *Zl = =175 no aces in deck
12 & 12

Right away, by observing the average of many cards we can see something is wrong, even without
seeing all the cards. This is purely theoretical at the moment. For an actual measurement, we
would need make sure we did enough measurements such that the 0.5 difference for the stacked
deck was larger than the uncertainty in our measured mean, using the standard deviation of the

mean. In practice, this means perhaps 50 or 75 measurements.

Of course, the person stacking the deck may understand this point of mathematics, and can easily
devise a method to fool you: remove one high and one low card, such that the average is the same.

For instance, if both the Aces and Kings were removed, the average is now (with 11 cards per suit

remaining):
1A, 2+434+4454+6+7+8+9+10+11+412

fsuitzfdeckszﬁz:i: roHator 0 1—; Rk =7 no aces or kings in deck
i=2

(6)

Merely using the average is of no help! I have actually performed this experiment, drawing 10 cards
at a time from 4 decks, reshuflling, and drawing again until I reached 150 cards. Below is a plot
of the running average of all cards seen as a function of the number of cards seen. One can see
that by about 50 cards the average has stabilized at about 7 as expected, both for a clean deck
and a “stacked” one. The insignificance of the difference between the two is more apparent if one
calculates the standard deviation of the mean at each point and uses it to draw error bars on the
plot, also shown below.

The fact that the error bars for both measurements overlap indicates that, within the statistical

VYou can calculate this more quickly by noting that 27:1 1= %n(n +1).
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Figure 1: left Running average as a function of the number of cards drawn. After some initial variability, there is no
stgnificant difference between the “stacked” and “clean” decks. right This is even more apparent when we include error

bars representing plus and minus one standard deviation of the mean. When the error bars overlap, there is no statistically
stgnificant difference between the two data sets.

accuracy of the measurements, they are not different. A simple mean measurement will not tell the
decks apart. What to do? By removing the most extreme cards, those farthest from the mean, our
opponent has not altered the mean, but he or she has altered the distribution of cards about that
mean. With less cards lying farther from the mean value of 7, we should find a smaller standard
deviation, since this is essentially what the standard deviation is designed to measure! Below is a
plot of the measured standard deviation for clean and stacked decks as a function of the number

of draws.

oL ® 4 clean decks
0 4 decks, A&K removed

Standard deviation

1 L L L L L L L
0O 20 40 60 80 100 120 140
trial
Figure 2: Running standard deviation as a function of the number of cards drawn. There is a distinct difference between the

two decks, reflecting the fact that the “stacked” deck mo longer has a uniform distribution of cards. The dashed lines show the
theoretically expected standard deviation for each deck.

It is now apparent that the ’stacked’ deck has a much smaller standard deviation, telling us right

away that some of the extreme-valued cards must be missing. Adding to that the fact that the
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mean is unchanged tells us that the missing cards must together have an average value of 7.

The plot above shows the measured standard deviation, does it agree with the theoretical value?

For a clean deck, we know exactly what cards are present, so we can calculate what the standard

deviation would be if we simply looked at all the cards.

We start with the mean z = 7 and

Equation Since all suits are the same in a deck, and all decks in our stack are the same, a

calculation for a single suit (n=13 cards) is sufficient:

1 13 1 13 2
o . AN .
Osuit = Odecks — \/ﬁ <;Z > 13 <; Z)

For a clean deck, this gives{"]

o \/11>2 (13(1? (27)) - 113(13 (214)>2 a0

This is in good agreement with my measured result of 4.00.

YYou can also use Equation [2, or simply do this in Excel. The first is more tedious, the second less.

i . . N
Y"We can note two useful formulas for the sum since we have consecutive integers: Zi:l

SV 2=nm+1)2n+1)/6

=1

t =n(n+1)/2 and
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3 Preparatory Questions

Comment on these questions in your report.

1. Suppose we removed the kings and queens from a deck of cards. Would you expect the mean
value to increase or decrease? The standard deviation?

2. How about if we removed the 2’s and queens?

3. Calculate the expected mean and standard deviation for a deck of cards in which all of the
aces and kings have been removed.

4. Find the mean, standard deviation of the mean, and standard deviation for the two data
sets below. Make a quick x—y plot of the two data sets. What does this tell you about the
limitations of purely statistical analysis

Data set 1 Data set 2
z Y x Y
10 8.04 10 9.14
8 6.95 8 8.14
13 7.58 13 8.74
9 8.81 9 8.77
11 8.33 11 9.26
14 9.96 14 8.10
6 7.24 6 6.13
4 4.26 4 3.10
12 10.84 12 9.13
7 4.82 7 7.26
5 5.68 5 4.74

Table 3: Two example data sets for analysis.

4 Supplies & Equipment

1. Two samples of playing cards
2. PC with Excel
3. Group of 2-4 students

5 Suggested Procedure

Fach group should receive two samples of cards, of roughly 100 cards each. Each sample is taken

from a large collection of cards (about 20 decks each), and thus each sample represents only a small

ViiThese two datasets are part of a quartet known as “Anscomb’s quartet,” specifically designed to have identical
simple statistical properties. Their graphs are another story ...see http://en.wikipedia.org/wiki/Anscombe’s_
quartet| for more information.


http://en.wikipedia.org/wiki/Anscombe's_quartet
http://en.wikipedia.org/wiki/Anscombe's_quartet
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fraction of the total number of cards in each collection. One of the two collections is comprised
of “clean” decks of cards, the second collection is made up of “stacked” decks. Using statistical
analysis, you can tell which set of cards comes from “stacked” decks even though you will not be

able to see all the cards.

1. Label your samples of cards A and B and do not mix them. As yet, you do not know which
one is from the clean decks, and which is from the stacked decks.

Pick one of the samples, and draw out 5-10 cards.

Record their numbers (using the table below as an example; using Excel is clever).

Return the drawn cards to the sample, and shuffle thoroughly.

Repeat steps 2-4 until you have drawn out a total of about 75 cards.

A

Repeat steps 2-5 for your second sample of cards

draw ¢ card

1 2
2 8
3 13
4 3

6 Data Analysis

Once you have acquired your data, calculate running mean and standard deviation as a function
of the number of points taken for each sample. Given that you have many data points, it is far
easier to do the work in Excel, which has a built-in function for calculating standard deviation.

The figure below shows an example table, along with the requisite formulas.

Once you have analyzed your data, plot the standard deviation (y axis) as a function of the number
of cards drawn (z axis) using Excel. For the entire set of data (i.e., after 75 cards for each sample),

calculate the standard deviation of the mean as well.

7 Discussion Topics for Report

e Did you draw enough cards for the mean and standard deviation to stabilize at a roughly

constant value?

e Are the average values significantly different for the two samples? How can you quantitatively

state this?
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draw card running average running standard
deviation
1 2 2.00
2 8 5.00 4.24
3 13 7.67 5.51
4 3 6.50 5.07
5 2 5.60 483
A B C D E
1 draw card running average running standard
deviation
2 1 2 2.00
3 2 B =AVERAGE(SBS$2:B3) =STDEV($BS2:B3)
4 3 13 A drag down A drag down
S 4 3 6.50 5.07
6 5 2 5.60 483
7

Figure 3: Letting Excel do the hard work ...the upper portion of the figure shows a data table and calculated average and
standard deviation, the lower portion reveals the formulas required. Type these formulas in the second row, hit enter, and drag
them downward to the last row of data.

Can you tell which deck is “stacked” from your statistical analysis? Why?

Can you hypothesize about how it was “stacked” from the statistical data alone?

Is Chebyshev’s inequality satisfied? Check that 75% of your data falls within +2¢ of the

average.

Would it be possible to devise a stacking of the deck that leaves both the mean and standard
deviation unchanged? Why?

8 Format of Report

Your report need not be formal, the format is largely up to you (though we suggest you follow the
template). Answer all the questions above, turn in plots of average and standard deviation for each
sample of cards, and your overall conclusions. Be sure to note the mean and standard deviation of

each sample. Address the discussion topics briefly.



