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Linear regression: the best fit line
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1 What is a “best-fit” line?
Let’s say we have a collection of data (xi, yi) we believe to have a linear relationship, namely y=mx + b.
What line best fits our data?

Previously, we considered a collection of repeated measurements xi, with n measurements. The average of
this collection is

x = 1
n

n∑
i=1

xi (1)

We also wanted to know something about the dispersion of these measurements about the average. The
procedure was to take every data point xi, calculate its deviation from the mean (xi − x), and square the
result so all the deviations were positive. We then defined the standard deviation σ of our collection as

σ =

√√√√ 1
n− 1

n∑
i=1

(xi − x)2 (2)

What this did for our collection of data points xi scattered around the mean x was to find the constant value
(horizontal line) that described our data with the minimum squared deviation.

If our data follows a linear relationship, what we would like to do is find the line that passes through our
data set with the minimum squared deviation about that line, rather than about a constant. We will imagine
that the parameter we control (the independent variable) are the xi, and for each xi, we measure a response
yi (the dependent variable). In this case, the xi are nominally known exactly, and we want to find the
linear function y = mxi + b that best describes our measured yi. If our linear function predicts values of
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ypred =mxi + b, we could, in analogy with the standard deviation, define an error ε that describes how much
squared deviation there is between our prediction and the measured data:

ε2 =
n∑

i=1
(yi − ypred) =

n∑
i=1

(yi −mxI − b)2 =
n∑

i=1

(
m2x2

i + 2mbxi − 2mxiyi + b2 − 2byi + y2
i

)
(3)

What we want is the line that gives the minimum ε2 for our data. Given our two adjustable parameters m
and b, this requires

dε2

dm
= 0 = 2m

n∑
i=1

x2
i + 2b

n∑
i=1

xi − 2
n∑

i=1
xiyi (4)

dε2

db
= 0 = 2m

n∑
i=1

xi + 2
n∑

i=1
b− 2

n∑
i=1

yi (5)

Clearly,
n∑

i=1
b=nb. Rearranging the two equations, we find

m =

n∑
i=1

xiyi − b
n∑

i=1
xi

n∑
i=1

x2
i

(6)

b = 1
n

(
n∑

i=1
yI −m

n∑
i=1

xi

)
(7)

Equivalently, these two relationships could be stated

n∑
i=1

xiyi = m

n∑
i=1

x2
i + b

n∑
i=1

xi (8)

n∑
i=1

yi = m

n∑
i=1

xi + nb (9)

Notice how these two equations resemble the linear relationship, but for the whole data set. We now have
2 equations with 2 unknowns, namely, m and b. Plugging the equation for b into the equation for m, we
can find the slope of our best-fit line m in terms of sums of our experimental data and the number of points
alone:

m =
n

n∑
i=1

xiyi −
n∑

i=1
xi

n∑
i=1

yi

n
n∑

i=1
x2

i −
(

n∑
i=1

xi

)2 =

(
n∑

i=1
xiyi

)
− nx y(

n∑
i=1

x2
i

)
− nx2

(10)

Note that we divided everything by n and used the definitions x=(
n∑

i=1
xi)/n and y=(

n∑
i=1

xi)/n. The intercept

is then found easily if we already have the slope:i

iWe should note that one can also calculate the uncertainty or confidence interval for the slope and intercept, a measure



b = trendline intercept = y −mx (11)

A neat fact is that trend line must pass through the dataset average point (x, y). Of course, these parameters
m and b describing the trend line have uncertainties, which can be calculated.

2 Uncertainty in the fit parameters
Of course, our data will not follow a linear relationship perfectly, and there will be uncertainty in the
measured values yi. Following our definition of standard deviation, a good estimate of the uncertainty σy

would be

σy =

√√√√ 1
n− 2

n∑
i=1

(yi −mxi − b)2 (12)

Here the factor 1/(n− 2) is a bit mysterious, and we will not dwell on it, but for large n it is a minor point.
One can think that because with only two points we could always find a perfect line, we must really only
consider the subsequent n − 2 points in finding the best fit line. From this uncertainty, one can derive the
uncertainty in the fit coefficients:

σb = σy

√√√√√√√√
n∑

i=1
x2

i

n
n∑

i=1
x2

i −
(

n∑
i=1

xi

)2 (13)

σm = σy

√√√√√ n

n
n∑

i=1
x2

i −
(

n∑
i=1

xi

)2 (14)

Thus, we could report the fit parameters as b± σb and m± σm to provide a confidence interval.

We note a few limitations here. First, this does not consider uncertainty in the xi - they are assumed to be a
perfectly known independent variable. Second, this does not handle the case of weighted fitting. In practice,
if the uncertainty in the y values are known, we would like to weight points with lower uncertainty more
heavily, and deemphasize points with large uncertainty. We provide these formulas in the next section.

3 Weighted least squares fitting
If we expect the yi to fall on a straight line y=mx+ b and the measured yi have known uncertainties σi, we
can introduce a weight w for each point:

of how reliable the extracted trendline parameters are. This is a little more difficult and nuanced, and we will not dwell on it
right now. Be aware that the trendline parameters are merely best fit values – in any particular case, however, even the ‘best
fit’ can be pretty terrible! The correlation coefficient, discussed below and reported by most programs Excel or OriginLab, is
a simple way to judge the quality of the trendline in describing your data. Ideally, the slope and intercept should be reported
with uncertainty margins, however.



wi = 1
σ2

i

(15)

This has the desired property that both positive and negative uncertainties weight the data in the same way
(as in our calculation of standard deviation), and that more uncertain points have less influence over the fit
parameters. In this case, we can determine the fit coefficients from

b =

n∑
i=1

wx2
i

n∑
i=1

wyi −
n∑

i=1
wxi

n∑
i=1

wxiyi

n∑
i=1

w
n∑

i=1
wx2

i −
(

n∑
i=1

wxi

)2 (16)

m =

n∑
i=1

w
n∑

i=1
wxiyi −

n∑
i=1

wxi

n∑
i=1

wyi

n∑
i=1

w
n∑

i=1
wx2

i −
(

n∑
i=1

wxi

)2 (17)

The uncertainty in the fit parameters becomes

σb =

√√√√√√√√
n∑

i=1
wx2

i

n∑
i=1

w
n∑

i=1
wx2

i −
(

n∑
i=1

wxi

)2 (18)

σm =

√√√√√√√√
n∑

i=1
w

n∑
i=1

w
n∑

i=1
wx2

i −
(

n∑
i=1

wxi

)2 (19)

Note that this case still does not handle uncertainty in the xi, we still assume the xi are exactly controlled
independent variables.

Programs like OriginLab will let you specify that the y error values are to be used as weights in fitting.
Programs like Excel will require you to perform this calculation manually using the formulas above. The
primary point is that if your data has uncertainty, and the uncertainty is not the same for all points, a more
accurate estimate of the best-fit line should incorporate the uncertainties.

4 Correlation coefficient
We can also define (but will not derive) a “goodness of fit” parameter r. If r = 0, there is no correlation
between x and y – total randomness. If r =−1, the data are perfectly negatively correlated – a line with
negative slope. If r=+1, the data is perfectly positively correlated – a line with positive slope. The closer |r|
is to 1, the better the correlation, while a small value of |r| near zero indicates poor correlation. We would
guess that our r should be positive, and close to 1 based on the plot above. Without derivation, we’ll simply
quote how we calculate r:



quality of fit = r =
n

(
i=n∑
i=1

xiyi

)
−
(

i=n∑
i=1

xi

)(
i=n∑
i=1

yi

)
√
n

(
i=n∑
i=1

x2
i

)
−
(

i=n∑
i=1

xi

)2
√
n

(
i=n∑
i=1

y2
i

)
−
(

i=n∑
i=1

yi

)2
(20)

It is a bit fearsome-looking, and we will use a computer to calculate it automatically in general, but it just
involves sums of our data that we’ve already done to find the best-fit line.

5 Linearization of a non-linear relationship
Many experiments we will perform will not result in nicely linear data. As a simple example you have all
seen before, consider free-fall motion. In this case, we know that the vertical position versus time for an
object dropped from rest at a height xo is given by

x = 1
2aot

2 + xo = −1
2gt

2 + xo (21)

Here the second form explicitly assumes that ao =−g with the upward direction defined as positive y. How
can we make this into a linear relationship so we can make use of the regression analysis we just learned? We
can start by noticing that we would have a straight line relationship if we had t instead of t2 in the equation
above. If that is the case, all we need to do is plot x versus t2 instead of x versus t, or in other words we
can change the dependent variable from t to t2. Mathematically, we can do that by making the replacement
u= t2:

x = 1
2aou+ xo = −1

2gu+ xo (22)

Now we have a straight line of slope −g/2 and intercept xo, and we can perform our regression analy-
sis on the substituted data x(u) = y(t2), plotting x versus t2 and finding the appropriate trendline. For
rather subtle statistical reasons, this procedure is not generally as accurate as if the data were linear in the
first place, but it is typically a very good way to estimate the best-fit parameters for a non-linear relationship.

As another example, let’s say we had an exponential relationship, like this:

x = xoe
−at (23)

In this case, we could linearize the equation by taking the natural logarithm of each side and re-arranging:

ln x = −at+ ln xo (24)

Now if we plot ln y versus t we should get a straight line of slope −a and intercept ln xo. Not every equation
can be linearized in a simple way, of course, but more often than not it is the case. There are subtle problems
in handling uncertainties correctly this way if the uncertainties are not the same for all yi, but if the variation
in uncertainties is small or the uncertainties are unknown, linearization is an unambiguous and simple way
to get reasonable estimates of fit parameters.


