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Motion in 1D
Our investigations into mechanics will start simply enough, trying to come up with a quantitative

description of motion. Motion is already familiar to everyone, and it is true that many of the topics we
will study are, at a qualitative level, obvious enough. A quantitative description, on the other hand, is less
obvious. Our first task is then to consider some aspects of time and distance, the two ingredients required
for describing motion. What we are after are quantitative observations, which can hopefully be turned in to
more general quantitative relationships of phenomena allowing some predictive power. At that point, we’re
really doing science. Our end goal in this chapter is to come up with the theoretical formula for relating
distance and time for a falling object, and build from there.

1 Types of Motion
Before we begin, we should probably lay down a few ground rules and definitions.

Our primary goal is to find the laws governing changes in the position of bodies as time goes on, and
to do so we have to first describe these changes. We will – for now – ignore the agents causing changes in
motion, and seek only to describe it. This is the study of kinematics that will occupy a great deal of our
time this term. Generally speaking, there are three types of motion we will encounter, and we will deal with
them in this order:

1. translational (e.g., car on the highway)

2. rotational (e.g., earth on its axis, tires on a moving car)

3. vibrational (e.g., pendulum, mass on a spring)

The first refers to movement from place to place without any sort of vibrating or spinning, the second to
motion which is entirely spinning, and the third to motion which consists entirely of vibrating up and down
or side to side. For the moment, we will deal only with the first type of motion, no spinning or vibrating.
Later, we will deal with rotational and vibrational motion, and combinations of all three types of basic
motions.

For most of what we are going to do, there is a nice simplification we can make known as the “particle
model.” Basically, the simplification is to ignore the spatial extent of objects all together, and treat them as
point particles with a given mass. When the time comes, we will learn how and when to deal with the shape
of a particular object, primarily by pretending that real objects are simply built up out of many of these
little particles. Once we know how to analyze and predict the motion of a single little particle, figuring out
what to do with a collection of them stuck together isn’t much more difficult, as it turns out.

2 Describing motion mathematically
Much of what we’re about to cover probably seems obvious, but it wasn’t always so. Before Galileo, the
study of motion was primarily in the domain of philosophy, based purely on argument and logic without



appeal to experimental data. Galileo was skeptical of the whole endeavor, he was primarily interested in a
quantitative explanation of motion, not merely logic and discourse.

Galileo’s experiments dealt with the motion of falling objects. Rather than simply saying of the object
“it falls to earth,” he was more interested in the question of “how far did it go in a certain time interval?”
For this, he observed the motion of an object, and measured the distance it had fallen after a certain amount
of time.

These days, this sort of experiment is trivial. Even in Galileo’s day, distance measurements were well
known. Accurate time measurements, on the other hand, are a relatively recent invention - he didn’t have
a decent watch! What to do? First, he used his own pulse to provide a rudimentary time scale. Second,
rather than simply dropping objects, he used a shallow inclined plane to slow them down a great deal. The
whole experiment then consists of a long inclined plane marked off in even distance increments, and Galileo
just needed to see how many units the object rolled past per pulse.

Now, we could perform a similar experiment, but with a great deal more accuracy, and without the need
for the inclined plane to slow things down. In fact, one of your first laboratory experiments will be to track
the position of a ball falling from rest as a function of time. Until then, here is an example of some data
you might take, with the ball starting at rest at time t = 0. The distance measured, x, is how far the ball
fell from its starting position after the indicated amount of time t.

t (s) x (m)
0 0
1 5
2 20
3 45
4 80
5 125

Table 1: Position versus time for a falling ball. The clock was
started (t=0) as soon as the object was released, and the object’s
position was measured relative to its starting position (x=0).

Clearly this is not a real experiment - for one, the numbers are all a bit too ’round’, and that’s ignoring
the fact that we don’t have a 125m (410 ft) hole to drop things into! That being said, what can we see from
this data? How can we characterize the motion represented by this data? In order to characterize the motion
properly, we need some further abstraction of motion to characterize how this ball falls. Not all motion is
the same, qualitatively or quantitatively. We know that the ball fell 125m in 5 s, but there are zillions of
ways one can go 125m in 5 s!

So, how do we figure out the nature of the ball’s motion? Philosophically, one could come up with various
arguments or hypotheses for how the ball ought to fall, and then test them against the data we have. The
idea of testability is crucial - if it can’t be tested or disproven, what’s the point? One possible hypothesis
(which turns out to be false) might be:

Possible hypothesis for motion of a falling object:
For every increment of time ∆t, the ball falls the same distance ∆x, or ∆x∝∆t. (False)

This basically says that during every 1 s interval, the ball should fall the same distance further. Math-
ematically, it means that distance fallen x is proportional to time t, so a plot of x(t) should give a straight
line. This is a beautifully simple idea, logical enough . . . and spectacularly wrong! Let’s test it with the data
we have. All we need to do is figure out the differences in the distances between successive measurements
∆x, since all the measurements are separated by 1 s. Generally speaking, when we write a something like
∆x, the ∆ implies a change in the quantity x:



∆x = change in x = x(t2)− x(t1) (1)

where the notation x(t1) indicates position x measured at time t1 and x(t2) indicates a measurement at
time t2 so it is clear that (1) x is a function of time t, (2) t2 and t1 represent two different times, and (3)
the position is measured at these two different times.

In fact, this change of position ∆x per time interval ∆t would be the slope of the x(t) graph. Specifying
this slope or rate of change ∆x/∆t, as opposed to just the distance covered ∆x, has the advantage of not
tying us to any particular time interval ∆t, the rate of change already accounts for how long one waits
between measurements.

time distance rate distance changed
t (s) x (m) ∆x/∆t (m/s)
0 0 –
1 5 5
2 20 15
3 45 25
4 80 35
5 125 45

Table 2: The rate at which the ball’s position changes during
every increment of time.

Clearly, our hypothesis is not true – the ball falls even farther in a given second the longer it has been
falling! On the other hand, we notice something interesting now, the rate of change is increasing at a steady
rate. In fact, we could describe the increase in the rate of change perfectly with the equation

∆x

∆t
= 10t− 5 (2)

If we were to look even more carefully, we would find that the position versus time data increases
parabolically, according to x(t)=5t2. But more on that later.

Evidently, for our falling object, the rate at which the position changes increases linearly in time. What
is this quantity? It has units of distance over time, or meters per second, and it is what we would usually
call the object’s speed! In physics, words like ‘speed’ and ‘velocity’ have particular meaning, and cannot be
used interchangeably . . . but we will come to that in time. Another important point is that what we have
calculated is speed or velocity over a whole interval of time, not just at one particular instant. We will make
a distinction between average velocities like this one, where we subtract two positions and divide by the
difference of two corresponding times, and instantaneous velocities, specified at a single instant in time.

In any event, what we have calculated is a suitable definition for average velocity. Averaging will usually
be denoted by a horizontal line over the symbol in question.

v = average velocity = ∆x

∆t
(3)

Ideally, we would want to have enough data that we can make ∆t as small as possible, in order to specify
velocity over increasingly fine intervals of time. The ultimate limit would be letting the time interval go
to zero, so we could speak of velocity at a precise instant in time. Mathematically, this is no more than
the definition of a derivative, and the derivative of position with respect to time gives us the instantaneous
velocity v:



v = lim
∆t→0

∆x

∆t
≡ dx

dt
(4)

Of course, no real data set has ∆t→ 0, but for the purpose of building a mathematical model, it is
much more convenient to use the continuous time derivative formulation rather than the discrete time finite
difference formulation.

We can take our analysis one step further and ask how the object’s average velocity changes in time.
We do this in the same way, calculating the successive differences in average velocity between measurements
and dividing by the time interval, thereby finding the rate at which the velocity is changing while the object
falls:

time distance average velocity rate velocity changes
t (s) x (m) v (m/s) ∆v/∆t (m/s2)
0 0 – –
1 5 5 –
2 20 15 10
3 45 25 10
4 80 35 10
5 125 45 10

Table 3: The rate at which the
ball’s average velocity changes
during every increment of time.

Now we are on to something interesting: the rate at which the velocity changes is indeed a constant! We
have discovered what we might call a constant of the motion, and this leads us to a second hypothesis:

Possible hypothesis for motion of a falling object, #2:
The rate at which the velocity changes for a falling object is a constant. (True)

Equivalent hypothesis for motion of a falling object, #2:
The acceleration for a falling object is a constant. (True)

The rate of average velocity change with time has units of (m/s)/s, or m/s2, and this quantity is what
we usually call average acceleration a. For a falling object, it is about 10 m/s2, and apparently a constant
for the entire motion.

a = ∆v

∆t
(5)

Again, the “average” here means that we have calculated the rate of change over some discrete interval
in time, rather than at a single instant. As we did with velocity, we can take the limit ∆t→ 0 to find an
instantaneous acceleration a, rather than using discrete time differences:

a = lim
∆t→0

∆v

∆t
≡ dv

dt
= d

dt

dx

dt
= d2x

dt2 (6)

Thus, acceleration is the time rate of change of velocity, which is itself the time rate of change of position.
Note that if we had started with the assumption of constant acceleration (for some reason), we are now able
to derive the velocity and position as a function of time, simply by integrating. First, we can integrate
acceleration to find velocity. Since a=dv/dt, we may write dv =a dt and integrate. Let us assume we want
to know the velocity at time t having started at time 0.



v(t) =
t∫

0

dv =
t∫

0

a dt = at (7)

We can similarly integrate the velocity to find position, since v =dx/dt, then dx=v dt. We will further
assume that the object of interest started out at position 0 at time 0.

x(t) =
t∫

0

dx =
t∫

0

v dt =
t∫

0

at dt = 1
2at2 (8)

Had we know that falling motion was characterized by constant acceleration, we could have come up
with the correct forms for x(t) and v(t). Note that we needed two additional experimental inputs - the
initial velocity and position. This is generally the case; since we integrated twice, there are two necessary
constants of integration to completely specify the motion, and these constants (or boundary conditions) can
only come from additional knowledge about the problem at hand. Later, we will derive the results above
more carefully, properly taking into account these boundary conditions.

Beyond position and time, we have come up with two further abstractions, velocity and acceleration,
which give us a better understanding of the character of motion. In particular, we now know that acceleration
is a constant for free-fall motion. We will consider both more detail shortly, and apply our new techniques
to more general types of motion..

3 Position, velocity, & acceleration
Let us take a step back and look at time, position, velocity, and acceleration again in more detail.

3.1 Time

So far as we know, and for all practical purposes, time runs continuously. For our discussions, we will assume
that there are tiny stopwatches everywhere that can be started, stopped, and zeroed at will to measure the
passage of time during the events of interest. Generally, we will refer to two special times denoted by
subscripts:

ti = initial time, event starts (9)

tf = final time, event stops (10)

∆t = tf − ti = elapsed time (11)

The ‘zero’ for time is wherever we find it convenient, so long as we are clear what instant we define to
be t=0

3.2 Position

Position is a quantity everyone is familiar with. We might state a position ‘227 Gallalee Hall’, ‘the corner of
University and Hackberry’, or ‘1 meter above my head.’ What is common to describing position in any of
these examples is an explicit or implied coordinate system and origin. As evidenced by these examples, we
are more used to dealing with relative positions with an implied origin or point of reference.



In physics, we generally need to be explicit about not only the point of reference but the coordinate
system we are using to describe positions. Neither changes the fundamental physics we are describing, and
the choice of either is usually based on convenience more than anything. None the less, without being clear
about these choices, only confusion can result.

A chosen coordinate system might be cartesian or circular in two dimensions, and we will usually pick
the coordinate system based on the symmetry of the problem. For instance, for projectile motion, a cartesian
x−y coordinate system is fine, whereas for analyzing the motion of a child on a merry-go-round we might
find circular coordinates easier to work with. The choice of origin is equally arbitrary, but will usually be
chosen at some convenient location, such as the starting or ending point of the motion we are analyzing.

Position is interesting to us because changes in position constitute motion, and that is what we seek to
understand first. For now, we will start with motion along a straight line (one dimensional motion), and
simple numbers are all we need to describe position. When we move on to motion in a plane (two dimensional
motion), we will need at least two numbers to describe position - either two coordinates and an origin, or
the two components of a vector.

When talking about motion in one dimension, we wish to quantify changes in position. First, there is the
relative change in position, which we’ll usually call displacement. This is nothing more than the difference
between the starting and ending position:

∆x = displacement = xfinal − xinitial ≡ xf − xi (12)

Displacement is the distance ‘as the crow flies,’ from point to point. If you drive to Birmingham and
back again, your net displacement is zero because in net you haven’t gone anywhere! This of course misses
something important, the actual distance traveled. Distance is the entire length of the path traveled, so
while your displacement for your drip to Birmingham might be zero, the distance is still 118mi round trip.

3.3 Speed & velocity

Speed and velocity both represent the time rate of change of position, and in straight-line motion (motion
in one dimension) they are essentially the same. They are not the same in general, however, a distinction
which will be more apparent when we move on to motion in a plane (motion in two dimensions). For the
moment, suffice it to say that speed is the rate at which distance changes, while velocity is the rate at which
displacement changes, and includes the direction in which position is changing. Thus, a proper speed might
be something like 2m/s, whereas a proper velocity is something like 2m/s east.

If we have measurements of position x(tf ) and x(ti) at times tf and ti, respectively, we can define an
average velocity over the time interval ti to tf :

average velocity = v = xf − xi

tf − ti
= ∆x

∆t
= displacement

time (13)

The average velocity is just the displacement over the elapsed time. For your trip to Birmingham and
back, the average velocity is in fact zero, since your net displacement is zero! The average speed, on the other
hand, is the total distance covered divided by the elapsed time:

average speed = total distance covered
total time (14)

The average speed for your trip to Birmingham will not be zero, it will be the 118mi round trip distance
divided by the total elapsed time. With rare exception, we will deal only with velocities.



3.3.1 Instantaneous velocity

The average velocity as defined above represents the slope of a line drawn between points (ti, xi) and (tf , xf ),
and by its nature ignores any variation of velocity in the time interval between ti and tf . Obviously this
is not so good in general, so we seek to make the time difference ∆t = tf−ti as small as possible. What
happens if we keep making it smaller and smaller? Long story short, if ∆t becomes infinitesimally small,
what we end up with is the slope of the tangent line to the position-time graph at the point of interest,
and the average velocity over a fleeing instant of time. Taken to the extreme of ∆t→ 0, we find that the
instantaneous velocity is the time derivative of the position.

instantaneous velocity = v(t1) = slope of tangent at x(t1) = dx

dt

∣∣∣∣
t1

(15)

Table 4: Characterizing velocity

v 6=0 object is moving, position changes
v <0 position decreasing
v >0 position increasing

v changes sign object changing direction

3.4 Acceleration

Acceleration represents the time rate of change of velocity, and as we will see soon, is closely tied to our
notion of force. As with velocity, we can define both an average and instantaneous acceleration,

average acceleration = a = vf − vi

tf − ti
= ∆v

∆t
= change in velocity

time (16)

instantaneous accel. = a(t1) = slope of tangent at v(t1) = dv

dt

∣∣∣∣
t1

= d2x

dt2

∣∣∣∣
t1

(17)

For our falling object, our hypothesis was that acceleration is a constant, so it makes no difference
whether we use the average or instantaneous definition. In fact, for the bulk of this course, we will deal with
constant (or zero) accelerations, and as such using the instantaneous acceleration will be sufficient.

Table 5: Characterizing acceleration

a 6=0 velocity is changing
a<0 velocity decreasing
a>0 velocity increasing

a changes sign object changing from speeding up
to slowing down (or vice versa)

4 Motion with constant acceleration
In cases where we have a constant acceleration, we can come up with some relatively simple formulas for
describing motion by thinking about what the resulting velocity and position must be.



Let us say we have a constant acceleration ao. If acceleration is constant, what does that mean for
velocity? Acceleration is the slope of the velocity versus time graph, so a constant acceleration means that
we are looking for the sort of curve that is characterized by a constant slope – a line! Thus, the velocity
versus time curve v(t) is just a straight line of slope ao, and must be of the form v(t)=aot + b.

What is the constant b? We don’t know it yet, because acceleration only tells us the rate of change of
velocity, we could add to that any constant velocity and not change the acceleration. Mathematically, it
means that we know the slope of a line, but not its intercept. What we need to determine the intercept is a
data point, or a boundary condition. Let us say that we know the initial velocity at time t=0 is vi. Plugging
in that condition,

v(0) = b + ao (0) = vi =⇒ b = vi (18)

We could have done this much more quickly with a bit of calculus.

a = const (19)

v(t) =
∫

a dt = at + C (20)

Again, the arbitrary constant (C in this case, coming from the integration) is determined by the velocity
at time zero, v(0) = vi. In either case, the equation for velocity as a function of time under constant
acceleration is completely known, provided we know the starting velocity (or the velocity at any single point
in time):

Velocity versus time under constant acceleration ao with starting velocity vi:

v(t) = vi + aot (21)

Note that if the acceleration is zero, the velocity remains constant at vi. What about the position
versus time? We know that the velocity is increasing linearly with time according to the equation above, and
velocity is the slope of the position versus time curve. What we seek is a curve whose slope increases linearly
with time, or a curve whose tangent is a straight line of slope aot. Our particle starts out with velocity vi

at t=0 and undergoes acceleration ao. Over this time, it moves from position xi to position x at time t.
The average velocity over some time interval from 0 to t is just the average of the velocity at t= 0 and

the velocity at t,

v = vi + v(t)
2 (22)

Note that this equation only holds if the acceleration is constant. We know the expression for v(t), however:
v(t)=vi + aot. Substituting this into the equation above,

v = vi + vi + aot

2 = vi + 1
2aot (23)

On the other hand, we know that the average velocity is also the displacement divided by the elapsed time.
If the particle starts at position xi at time t=0 and moves to position x at time t,

v = x− xi

t− 0 (24)



Putting it all together and solving for x,

v = x− xi

t
= vi + 1

2aot (25)

x = xi + vit + 1
2aot2 (26)

Position versus time under constant acceleration ao, starting velocity vi and starting position xi:

x(t) = xi + vit + 1
2aot2 (27)

We can solve equation 21 for time and substitute it into our position formula to come up with an
expression relating only position, velocity, and acceleration without time at all:

t = v − vi

ao

x = xi + vi

(
v − vi

ao

)
+ 1

2ao

(
v − vi

ao

)2
move xi, multiply by 2ao

2ao (x− xi) = 2viv − 2v2
i + v2 − 2viv + v2

i

v2 = v2
i + 2ao (x− xi) (28)

This result is useful when you know everything except time.

Relating position, velocity, and acceleration when you don’t know time:

v2 = v2
i + 2ao (x− xi) (29)

Here vi and xi are the starting velocity and position, ao is the constant acceleration, and v and
x are the velocity and position at another time.

5 Falling objects
Acceleration due to gravity: g≈9.8m/s toward the surface of the earth.


