University of Alabama
 Department of Physics and Astronomy

PH io6-4 / LeClair
Fall 2008

Curvilinear Coordinates

Note that we use the convention that the cartesian unit vectors are $\hat{\mathbf{x}}, \hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$, rather than $\hat{\boldsymbol{\imath}}, \hat{\boldsymbol{\jmath}}$, and $\hat{\mathbf{k}}$, using the substitutions $\hat{\mathbf{x}}=\hat{\boldsymbol{\imath}}, \hat{\mathbf{y}}=\hat{\boldsymbol{\jmath}}$, and $\hat{\mathbf{z}}=\hat{\mathbf{k}}$.

Definition of coordinates

Table I: Relationships between coordinates in different systems. ${ }^{\dagger}$

Cartesian (x, y, z)	Cylindrical (R, φ, z)	Spherical (r, θ, φ)
$R=\sqrt{x^{2}+y^{2}}$	$x=R \cos \varphi$	$x=r \sin \theta \cos \varphi$
$\varphi=\tan ^{-1}\left(\frac{y}{x}\right)$	$y=R \sin \varphi$	$y=r \sin \theta \sin \varphi$
$z=z$	$z=z$	$z=r \cos \theta$
$r=\sqrt{x^{2}+y^{2}+z^{2}}$	$r=\sqrt{R^{2}+z^{2}}$	$R=r \sin \theta$
$\theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right)$	$\theta=\tan ^{-1}\left(\frac{R}{z}\right)$	$\varphi=\varphi$
$\varphi=\tan ^{-1}\left(\frac{y}{x}\right)$	$\varphi=\varphi$	$z=r \cos \theta$

$\dagger_{\text {See also http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates and references therein. }}^{\text {. }}$

Definition of unit vectors

Cartesian (x, y, z)	Cylindrical (R, φ, z)	Spherical (r, θ, φ)
$\hat{\mathbf{R}}=\frac{x}{R} \hat{\mathbf{x}}+\frac{y}{R} \hat{\mathbf{y}}$	$\hat{\mathbf{x}}=\cos \varphi \hat{\mathbf{R}}-\sin \varphi \hat{\varphi}$	$\hat{\mathbf{x}}=\sin \theta \cos \varphi \hat{\mathbf{r}}+\cos \theta \cos \varphi \hat{\theta}-\sin \varphi \hat{\varphi}$
$\hat{\boldsymbol{\varphi}}=-\frac{y}{R} \hat{\mathbf{x}}+\frac{x}{R} \hat{\mathbf{y}}$	$\hat{\mathbf{y}}=\sin \varphi \hat{\mathbf{R}}+\cos \varphi \hat{\boldsymbol{\varphi}}$	$\hat{\mathbf{y}}=\sin \theta \sin \varphi \hat{\mathbf{r}}+\cos \theta \sin \varphi \hat{\hat{\theta}}+\cos \varphi \hat{\boldsymbol{\varphi}}$
$\hat{\mathbf{z}}=\hat{\mathbf{z}}$	$\hat{\mathbf{z}}=\hat{\mathbf{z}}$	$\hat{\mathbf{z}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\theta}$
$\hat{\mathbf{r}}=\frac{1}{r}(x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}})$	$\hat{\mathbf{r}}=\frac{1}{r}(R \hat{\mathbf{R}}+z \hat{\mathbf{z}})$	$\hat{\mathbf{R}}=\sin \theta \hat{\mathbf{r}}+\cos \theta \hat{\theta}$
$\hat{\theta}=\frac{1}{r R}\left(x z \hat{\mathbf{x}}+y z \hat{\mathbf{y}}-R^{2} \hat{\mathbf{z}}\right)$	$\hat{\boldsymbol{\theta}}=\frac{1}{r}(z \hat{\mathbf{R}}-R \hat{\mathbf{z}})$	$\hat{\boldsymbol{\varphi}}=\hat{\boldsymbol{\varphi}}$
$\hat{\varphi}=\frac{1}{R}(-y \hat{\mathbf{x}}+x \hat{\mathbf{y}})$	$\hat{\boldsymbol{\varphi}}=\hat{\boldsymbol{\varphi}}$	$\hat{\mathbf{z}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\theta}$

Line, surface, and volume elements in different coordinate systems.

Cartesian

$$
\begin{aligned}
& d \overrightarrow{\mathbf{l}}=\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z \\
& d \overrightarrow{\mathbf{S}}= \begin{cases}\hat{\mathbf{x}} d y d z & \text { yz-plane } \\
\hat{\mathbf{y}} d x d z & \text { xz-plane } \\
\hat{\mathbf{z}} d x d y & \text { xy-plane }\end{cases} \\
& d V=d x d y d z
\end{aligned}
$$

Cylindrical

$$
\begin{aligned}
d \overrightarrow{\mathbf{l}} & =\hat{\mathbf{R}} d R+\hat{\varphi} R d \varphi+\hat{\mathbf{z}} d z \\
d \overrightarrow{\mathbf{S}} & =\left\{\begin{array}{cc}
\hat{\mathbf{R}} R d \varphi d z & \text { curved-surface } \\
\hat{\varphi} d R d z & \text { meridional-plane } \\
\hat{\mathbf{z}} R d R d \varphi & \text { top/bottom-plane }
\end{array}\right. \\
d V & =R d R d \varphi d z
\end{aligned}
$$

Spherical

$$
\begin{aligned}
& d \overrightarrow{\mathbf{l}}=\hat{\mathbf{r}} d r+\hat{\boldsymbol{\theta}} r \sin \theta d \theta+\hat{\boldsymbol{\varphi}} r d \varphi \\
& d \overrightarrow{\mathbf{S}}=\left\{\begin{array}{cl}
\hat{\mathbf{r}} r^{2} \sin \theta d \theta d \varphi & \text { curved-surface } \\
\hat{\boldsymbol{\theta}} r \sin \theta d r d \varphi & \text { meridional-plane } \\
\hat{\boldsymbol{\varphi}} r d r d \theta & \text { xy-plane }
\end{array}\right. \\
& d V=r^{2} \sin \theta d r d \theta d \varphi
\end{aligned}
$$

Dot products between fundamental unit vectors.

	Cartesian			Cylindrical			Spherical		
	$\hat{\mathbf{x}}$	$\hat{\mathbf{y}}$	$\hat{\mathbf{z}}$	$\hat{\mathbf{r}}$	$\hat{\theta}$	$\hat{\varphi}$	$\hat{\mathbf{R}}$	$\hat{\varphi}$	$\hat{\mathbf{z}}$
$\hat{\mathbf{x}}$	I	O	o	$\sin \theta \cos \varphi$	$\cos \theta \cos \varphi$	$-\sin \varphi$	$\cos \varphi$	$-\sin \varphi$ o	
$\hat{\mathbf{y}}$	O	I	O	$\sin \theta \sin \varphi$	$\cos \theta \sin \varphi$	$\cos \varphi$	$\sin \varphi$	$\cos \varphi$	O
$\hat{\mathbf{z}}$	O	O	I	$\cos \theta$	$-\sin \theta$	о	O	-	I
$\hat{\mathbf{r}}$	$\sin \theta \cos \varphi$	$\sin \theta \sin \varphi$	$\cos \theta$	I	O	O	$\sin \theta$	O	$\cos \theta$
$\hat{\theta}$	$\cos \theta \cos \varphi$	$\cos \theta \sin \varphi$	$-\sin \theta$	o	I	$\cos \theta$	O	$-\sin \theta$	
$\hat{\varphi}$	$-\sin \varphi$	$\cos \varphi$	O	O	O	I	O	I	0
$\hat{\mathbf{R}}$	$\cos \varphi$	$\sin \varphi$	o	$\sin \theta$	$\cos \theta$	0	I	0	O
$\hat{\varphi}$	$-\sin \varphi$	$\cos \varphi$	O	O	O	I	O	I	O
$\hat{\mathbf{z}}$	-	-	1	$\cos \theta$	$-\sin \theta$	O	O	O	I

Scalar products

Say you have two vectors, $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$:

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=a_{x} \hat{\mathbf{x}}+a_{y} \hat{\mathbf{y}}+a_{z} \hat{\mathbf{z}} \\
& \overrightarrow{\mathbf{b}}=b_{x} \hat{\mathbf{x}}+b_{y} \hat{\mathbf{y}}+b_{z} \hat{\mathbf{z}}
\end{aligned}
$$

The 'dot' or scalar product of these two vectors results in a scalar, or just a number. We find this number by multiplying like components:

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=\sum_{i=1}^{n} a_{i} b_{i}
$$

where the latter sum runs over the number of dimensions in your problem (so from ito 3 for a normal 3 -dimensional problem). The magnitude one of these vectors is simply related to the dot product:

$$
|\overrightarrow{\mathbf{a}}|=\sqrt{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}}=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
$$

This gives us a geometric interpretation of the dot prodcut: it is the length of a square of side \vec{a}. We can also write the scalar product in terms of vector magnitudes, and the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$:

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta
$$

Put another way, given two vectors, the angle between them can be found readily:

$$
\theta=\cos ^{-1}\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}\right)
$$

Of course, this implies that if $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are orthogonal (at right angles), their dot product is zero:

$$
\text { if } \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}} \text {, then } \quad \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0
$$

Moreover, two vectors are orthogonal (perpendicular) if and only if their dot product is zero, and they have non-zero length, providing a simple way to test for orthogonality. A few other properties are tabulated below.

Table 2: Algebraic properties of the scalar product

formula	relationship
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}$	commutative
$\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}$	distributive
$\overrightarrow{\mathbf{a}} \cdot(r \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=r(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})+r(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})$	bilinear
$\left(c_{1} \overrightarrow{\mathbf{a}}\right) \cdot\left(c_{2} \overrightarrow{\mathbf{b}}\right)=\left(c_{1} c_{2}\right)(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$	multiplication by scalars
if $\overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}$, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$	orthogonality

Vector products

The 'cross' or vector product between these two vectors results in a pseudovector, also known as an 'axial vector. ${ }^{17}$ An easy way to remember how to calculate the cross product of these two vectors, $\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$, is to take the determinant of the following matrix:

$$
\left[\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right]
$$

Or, explicitly:

[^0]\[

\overrightarrow{\mathbf{c}}=\operatorname{det}\left|$$
\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}
$$\right|=\left(a_{y} b_{z}-a_{z} b_{y}\right) \hat{\mathbf{x}}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \hat{\mathbf{y}}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{\mathbf{z}}
\]

Note then that the magnitude of the cross product is

$$
|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta
$$

where θ is the smallest angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$. Geometrically, the cross product is the (signed) volume of a parallelepiped defined by the three vectors given. The pseudovector $\overrightarrow{\mathbf{c}}$ resulting from a cross product of $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is perpendicular to the plane formed by $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, with a direction given by the right-hand rule:

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=a b \sin \theta \hat{\mathbf{n}}
$$

where $\hat{\mathbf{n}}$ is a unit vector perpendicular to the plane containing $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$. Note of course that if $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are collinear (i.e., the angle between them is either 0° or 180°), the cross product is zero.

Right-hand rule

I. Point the fingers of your right hand along the direction of $\overrightarrow{\mathbf{a}}$.
2. Point your thumb in the direction of $\overrightarrow{\mathbf{b}}$.
3. The pseudovector $\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ points out from the back of your hand.

The cross product is also anticommutative, distributive over addition, and has numerous other algebraic properties:
Finally, note that the unit vectors in a orthogonal coordinate system follow a cyclical permutation:

$$
\begin{aligned}
\hat{\mathbf{x}} \times \hat{\mathbf{y}} & =\hat{\mathbf{z}} \\
\hat{\mathbf{y}} \times \hat{\mathbf{z}} & =\hat{\mathbf{x}} \\
\hat{\mathbf{z}} \times \hat{\mathbf{x}} & =\hat{\mathbf{y}}
\end{aligned}
$$

Example: Solving systems of linear equations

Say we have three equations and three unknowns, and we are left with the pesky problem of solving them. There are many ways to do this, we will illustrate two of them. Take, for example, three equations

Table 3: Algebraic properties of the vector product

formula	relationship
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$	anticommutative
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$	distributive over addition
$(r \overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times(r \overrightarrow{\mathbf{b}})=r(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$	compatible with scalar multiplication
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})+\overrightarrow{\mathbf{c}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=0$	not associative; obeys Jacobi identity
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})-\overrightarrow{\mathbf{c}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$	triple vector product expansion
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=-\overrightarrow{\mathbf{c}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=-\overrightarrow{\mathbf{a}}(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})$	triple vector product expansion
$\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$	triple scalar product expansion
$\left.\left\|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \mathbf{b}^{2}+\|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}\|^{2}=\|\overrightarrow{\mathbf{a}}\|^{2}\right\| \overrightarrow{\mathbf{b}}\right\|^{2}$	relation between cross and dot product
if $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$ then $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}$ iff $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}$	lack of cancellation

\dagger Note that the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it were, it would leave the cross product of a vector and a scalar, which is not defined
that result from applying Kirchhoff's rules to a particular multiple loop dc circuit:

$$
\begin{aligned}
I_{1}-I_{2}-I_{3} & =0 \\
R_{1} I_{1}+R_{3} I_{3} & =V_{1} \\
R_{2} I_{2}-R_{3} I_{3} & =-V_{2}
\end{aligned}
$$

The first way we can proceed is by substituting the first equation into the second:

$$
\begin{aligned}
V_{1} & =R_{1} I_{1}+R_{3} I_{3}=R_{1}\left(I_{2}+I_{3}\right)+R_{3} I_{3}=R_{1} I_{2}+\left(R_{1}+R_{3}\right) I_{3} \\
\Longrightarrow \quad V_{1} & =R_{1} I_{2}+\left(R_{1}+R_{3}\right) I_{3}
\end{aligned}
$$

Now our three equations look like this:

$$
\begin{aligned}
I_{1}-I_{2}-I_{3} & =0 \\
R_{1} I_{2}+\left(R_{1}+R_{3}\right) I_{3} & =V_{1} \\
R_{2} I_{2}-R_{3} I_{3} & =-V_{2}
\end{aligned}
$$

The last two equations now contain only I_{1} and I_{2}, so we can solve the third equation for $I_{2} \ldots$

$$
I_{2}=\frac{I_{3} R_{3}-V_{2}}{R_{2}}
$$

... and plug it in to the second one:

$$
\begin{aligned}
& V_{1}=R_{1} I_{2}+\left(R_{1}+R_{3}\right) I_{3}=R_{1}\left(\frac{I_{3} R_{3}-V_{2}}{R_{2}}\right)+\left(R_{1}+R_{3}\right) I_{3} \\
& V_{1}+\frac{V_{2} R_{1}}{R_{2}}-\left(R_{1}+R_{3}+\frac{R_{1} R_{3}}{R_{2}}\right) I_{3}=0 \\
& I_{3}=\frac{V_{1}+\frac{V_{2} R_{1}}{R_{2}}}{R_{1}+R_{3}+\frac{R_{1} R_{3}}{R_{2}}} \\
& I_{3}=\frac{V_{1} R_{2}+V_{2} R_{1}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}
\end{aligned}
$$

Now that you know I_{3}, you can plug it in the expression for I_{2} above.

What is the second way to solve this? We can start with our original equations, but in a different order:

$$
\begin{aligned}
I_{1}-I_{2}-I_{3} & =0 \\
R_{2} I_{2}-R_{3} I_{3} & =-V_{2} \\
R_{1} I_{1}+R_{3} I_{3} & =V_{1}
\end{aligned}
$$

The trick we want to use is formally known as 'Gaussian elimination,' but it just involves adding these three equations together in different ways to eliminate terms. First, take the first equation above, multiply it by $-R_{1}$, and add it to the third:

$$
\begin{aligned}
{\left[-R_{1} I_{1}+R_{1} I_{2}+R_{1} I_{3}\right] } & =0 \\
+\quad R_{1} I_{1}+R_{3} I_{3} & =V_{1} \\
\hline \quad \quad R_{1} I_{2}+\left(R_{1}+R_{3}\right) I_{3} & =V_{1}
\end{aligned}
$$

Now take the second equation, multiply it by $-R_{1} / R_{2}$, and add it to the new equation above:

$$
\begin{aligned}
-\frac{R_{1}}{R_{2}}\left[R_{2} I_{2}-R_{3} I_{3}\right] & =-\frac{R_{1}}{R_{2}}\left[-V_{2}\right] \\
+\quad R_{1} I_{2}+\left(R_{1}+R_{3}\right) I_{3} & =V_{1} \\
\hline \Longrightarrow \quad\left(\frac{R_{1} R_{3}}{R_{2}}+R_{1}+R_{3}\right) I_{3} & =\frac{R_{1}}{R_{2}} V_{2}+V_{1}
\end{aligned}
$$

Now the resulting equation has only I_{3} in it. Solve this for I_{3}, and proceed as above.

Optional: There is one more way to solve this set of equations using matrices and Cramer's rule if you are familiar with this technique. If you are not familiar with matrices, you can skip to the next problem - you are not required or necessarily expected to know how to do this. First, write the three equations in matrix form:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
R_{1} & 0 & R_{3} \\
0 & R_{2} & -R_{3} \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right] } & =\left[\begin{array}{c}
V_{1} \\
-V_{2} \\
0
\end{array}\right] \\
\mathbf{a I} & =\mathbf{V}
\end{aligned}
$$

The matrix a times the column vector \mathbf{I} gives the column vector \mathbf{V}, and we can use the determinant of the matrix a with Cramer's rule to find the currents. For each current, we construct a new matrix, which is the same as the matrix a except that the the corresponding column is replaced the column vector \mathbf{V}. Thus, for I_{1}, we replace column I in a with \mathbf{V}, and for I_{2}, we replace column 2 in a with \mathbf{V}. We find the current then by taking the new matrix, calculating its determinant, and dividing that by the determinant of \mathbf{a}. Below, we have highlighted the columns in a which have been replaced to make this more clear:

$$
I_{1}=\frac{\left|\begin{array}{ccc}
V_{1} & 0 & R_{3} \\
-V_{2} & R_{2} & -R_{3} \\
0 & -1 & -1
\end{array}\right|}{\operatorname{det} \mathbf{a}} \quad I_{2}=\frac{\left|\begin{array}{ccc}
R_{1} & V_{1} & R_{3} \\
0 & -V_{2} & -R_{3} \\
1 & 0 & -1
\end{array}\right|}{\operatorname{det} \mathbf{a}} \quad I_{3}=\frac{\left|\begin{array}{ccc}
R_{1} & 0 & V_{1} \\
0 & R_{2} & -V_{2} \\
1 & -1 & 0
\end{array}\right|}{\operatorname{det} \mathbf{a}}
$$

Now we need to calculate the determinant of each new matrix, and divide that by the determinant of a liii First, the determinant of \mathbf{a}.

$$
\operatorname{det} a=-R_{1} R_{2}-R_{1} R_{3}+0-0+0-R_{2} R_{3}=-\left(R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)
$$

We can now find the currents readily from the determinants of the modified matrices above and that of a we just found:

[^1]\[

$$
\begin{aligned}
& I_{1}=\frac{-V_{1} R_{2}-V_{1} R_{3}+0-0+V_{2} R_{3}-0}{-\left(R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)}=\frac{V_{1}\left(R_{2}+R_{3}\right)-V_{2} R_{3}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}} \\
& I_{2}=\frac{R_{1} V_{2}-0-V_{1} R_{3}-0+0+R_{3} V_{2}}{-\left(R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)}=\frac{R_{3} V_{1}-V_{2}\left(R_{1}+R_{3}\right)}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}} \\
& I_{3}=\frac{0-R_{1} V_{2}+0-0+0-V_{1} R_{2}}{-\left(R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)}=\frac{R_{1} V_{2}+R_{2} V_{1}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}
\end{aligned}
$$
\]

These are the same results you would get by continuing on with either of the two previous methods. Both numerically and symbolically, we can see from the above that $I_{1}=I_{2}+I_{3}$:

$$
\begin{aligned}
I_{2}+I_{3} & =\frac{R_{3} V_{1}-V_{2}\left(R_{1}+R_{3}\right)+R_{1} V_{2}+R_{2} V_{1}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}} \\
& =\frac{V_{1}\left(R_{2}+R_{2}\right)+V_{2}\left(R_{1}-R_{1}-R_{3}\right)}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}} \\
& =\frac{V_{1}\left(R_{2}+R_{2}\right)-V_{2} R_{3}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}=I_{1}
\end{aligned}
$$

[^0]: ${ }^{i}$ Pseudovectors act just like real vectors, except they gain a sign change under improper rotation. See for example, the Wikipedia page "Pseudovector." An improper rotation is an inversion followed by a normal (proper) rotation, just what we are doing when we switch between right- and left-handed coordinate systems. A proper rotation has no inversion step, just rotation.

[^1]: ${ }^{\text {ii }}$ See 'Cramer's rule' in the Wikipedia to see how this works.
 ${ }^{\text {iii }}$ Again, the Wikipedia entry for 'determinant' is quite instructive.

