PH 125 Quiz 3

$$
W=\int_{r_{i}}^{r_{f}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\int_{x_{i}}^{x_{f}} F_{x} \cdot \mathrm{~d} x \quad \Sigma W=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
$$

1. The magnitude of the force on a spring as a function of its displacement from equilibrium $(x=0)$ can be written $F=-k x$, where k is the "force constant" of the spring. What is the amount of work done in stretching the spring from $x=0$ to $x=x_{f}$?
2. What is the work done when a 3 kg object free-falls 1 m straight down, relative to the earth's surface? You can neglect air resistance, and let $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
3. If you did not ignore air resistance in question 2 , which of the following would be true?
\square The work done would be more, work is done against air resistance and gravity.

- The work done would be less, air resistance is countering work by gravity.
- The work done would be the same, the force of air resistance does no work.
- Cannot be determined without knowing the precise nature of the force of air resistance.

