UNIVERSITY OF ALABAMA Department of Physics and Astronomy

PH 125 LeClair

Spring 2014

Quiz 4: momentum and such

1. A rubber ball strikes a brick wall with a velocity (just before the collision) of $\vec{\mathbf{v}}_i = 3.0\hat{\imath} + 4.0\hat{\jmath}$ m/s. It rebounds with a velocity of $\vec{\mathbf{v}}_f = -3.0\hat{\imath} + 4.0\hat{\jmath}$ m/s, *i.e.*, the collision was perfectly elastic. What can be said about the change in momentum of the rubber ball?

- $\hfill\square$ The momentum $\vec{\mathbf{p}}$ did not change, since the collision was elastic.
- \blacksquare The momentum $\vec{\mathbf{p}}$ changed direction, its magnitude is the same.
- $\hfill\square$ The momentum $\vec{\mathbf{p}}$ decreased.
- \square The momentum $\vec{\mathbf{p}}$ increased.
- \square The question cannot be answered, we do not know the mass of the ball.

Solution: The magnitude of the momentum $|\vec{\mathbf{p}}| = m |\vec{\mathbf{v}}|$ is the same in either case, but its direction has changed. Both before and after the collision, $|\vec{\mathbf{v}}| = 3^2 + 4^2 = 5^2$, so independent of the mass, $|\vec{\mathbf{p}}|$ is constant.

2. Which of the following is in error?

$$\mathbf{\vec{F}} = \frac{\mathrm{d}\vec{\mathbf{p}}}{\mathrm{d}t}$$

$$\mathbf{\vec{F}} = \frac{p^2}{2m}$$

$$\mathbf{\vec{p}} = m\frac{\mathrm{d}\vec{\mathbf{x}}}{\mathrm{d}t}$$

$$\mathbf{\vec{P}} = \int \vec{\mathbf{F}} \cdot \mathrm{d}\vec{\mathbf{r}}$$

Solution: With p = mv and constant mass m, all are true but the last option, it should be $\Delta \vec{\mathbf{p}} = \int \vec{\mathbf{F}} dt$.

3. A 60 kg person standing on a frictionless surface fires a 0.5 kg arrow horizontally at 50 m/s. With what velocity does the archer move backwards across the ice after firing the arrow?

- $\Box v_{\text{archer}} = +0.42 \,\text{m/s}$
- $v_{\rm archer} = -0.42 \,\mathrm{m/s}$
- $\Box v_{\rm archer} = -0.84 \,\mathrm{m/s}$
- $\Box v_{\text{archer}} = +0.84 \,\text{m/s}$

Solution: Conservation of momentum: initially there is zero momentum, so afterwards we must have $m_{\text{archer}}v_{\text{archer}}+m_{\text{arrow}}v_{\text{arrow}}=0$. The archer's velocity must be negative, ruling out two answers right off the bat. Solving for v_{archer} and plugging in the numbers, $v_{\text{archer}} = +0.42 \text{ m/s}$.

4. A ball of mass m is dropped from rest at a height h. What is the magnitude of the ball's momentum just before impact?

D 2mgh $m\sqrt{gh}$ $m\sqrt{2gh}$ $D \sqrt{2mgh}$

Solution: The ball starts at height h above the ground, with potential energy $U_i = mgh$. It reaches the ground with zero potential energy, and thus kinetic energy $K_f = \frac{1}{2}mv^2 = U_i = mgh$. This gives the velocity as the ball strikes the ground as $v = \sqrt{2gh}$, so the momentum is $p = mv = m\sqrt{2gh}$.