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Chapter 2 
Motion in One 
Dimension
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MasteringPhysics, PackBack Answers

• You should be on both by Tuesday.
• MasteringPhysics – first reading quiz Tuesday

• PackBack – should have email & be signed up. Can use 
course code if you didn’t get email.

© 2014 Pearson Education, Inc.
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PackBack Answers

• Try to ask questions you are curious about
• Don’t just use book discussion questions, ideally

– unless that is what you are curious about …
• Can be about physics we don’t cover
• the volume of questions can be high at first

– try to browse and see what has already been asked
– provide answers & up/down vote as you browse

© 2014 Pearson Education, Inc.
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PackBack

© 2015 Pearson Education, Inc.
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Labs

• first procedure – link on MasteringPhysics
• read ahead of time
• can print there (one per group!)

• I set the guidelines, but the TAs are in charge

• start of each lab – work on problems

© 2014 Pearson Education, Inc.
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A data-driven approach

watch an object fall
• record position vs time
• what can we find out?

• (clearly not real data)

Chapter 1. Motion in 1D

1.2 Describing motion mathematically

Much of what we’re about to cover probably seems obvious, but it wasn’t always so. Before Galileo,

the study of motion was primarily in the domain of philosophy, based purely on argument and logic

without appeal to experimental data. Galileo was skeptical of the whole endeavor, he was primarily

interested in a quantitative explanation of motion, not merely logic and discourse.

Galileo’s experiments dealt with the motion of falling objects. Rather than simply saying of

the object “it falls to earth,” he was more interested in the question of “how far did it go in a

certain time interval?” For this, he observed the motion of an object, and measured the distance

it had fallen after a certain amount of time.

These days, this sort of experiment is trivial. Even in Galileo’s day, distance measurements

were well known. Accurate time measurements, on the other hand, are a relatively recent invention

- he didn’t have a decent watch! What to do? First, he used his own pulse to provide a rudimentary

time scale. Second, rather than simply dropping objects, he used a shallow inclined plane to slow

them down a great deal. The whole experiment then consists of a long inclined plane marked o↵

in even distance increments, and Galileo just needed to see how many units the object rolled past

per pulse.

Now, we could perform a similar experiment, but with a great deal more accuracy, and without

the need for the inclined plane to slow things down. In fact, one of your first laboratory experiments

will be to track the position of a ball falling from rest as a function of time. Until then, here is an

example of some data you might take, with the ball starting at rest at time t= 0. The distance

measured, x, is how far the ball fell from its starting position after the indicated amount of time t.

t (s) x (m)

0 0
1 5
2 20
3 45
4 80
5 125

Table 1.1: Position versus time for a falling ball. The clock

was started (t=0) as soon as the object was released, and the

object’s position was measured relative to its starting position

(x=0).

Clearly this is not a real experiment - for one, the numbers are all a bit too ’round’, and that’s

ignoring the fact that we don’t have a 125m (410 ft) hole to drop things into! That being said, what

can we see from this data? How can we characterize the motion represented by this data? In order

to characterize the motion properly, we need some further abstraction of motion to characterize

how this ball falls. Not all motion is the same, qualitatively or quantitatively. We know that the

ball fell 125m in 5 s, but there are zillions of ways one can go 125m in 5 s!

So, how do we figure out the nature of the ball’s motion? The basic idea is to come up with

various arguments or hypotheses for how the ball ought to fall, translate that into a mathematical

model, and then test it against the data we have. The idea of testability is crucial - if it can’t be
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what’s the plan?
• see what we can figure out from data alone

• need an abstraction – a model for how it falls
• come up with a hypothesis from data
• what does it predict?
• test it

© 2015 Pearson Education, Inc.

A data-driven approach
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what’s the hypothesis?
• we don’t have great everyday intuition

• falling happens too fast (hang time?)
• no accurate timing

• let’s try something that seems plausible

© 2015 Pearson Education, Inc.

A data-driven approach
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possible hypothesis 1
for every increment of time Δt, the object falls the same 
distance Δx.

Mathematically: Δx∝ Δt, or Δx vs Δt is a straight line

© 2015 Pearson Education, Inc.

A data-driven approach
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nice idea, but wrong
Possible hypothesis 1: for every increment of time Δt, 
the object falls the same distance Δx.

If this were true, the ∆x should be the same for identical 
time intervals, or ∆x/∆t should be constant

(We know now this means constant velocity.)

© 2015 Pearson Education, Inc.

A data-driven approach
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data says:

© 2015 Pearson Education, Inc.

A data-driven approach

Hypothesis 1 is wrong. The object speeds up as it falls.

Chapter 1. Motion in 1D

tested or disproven, what’s the point? One possible hypothesis (which turns out to be false) might

be:

Possible hypothesis for motion of a falling object:

For every increment of time �t, the ball falls the same distance �x. Mathematically, that

implies �x/�t, or that �x versus �t is a straight line. (False)

This basically says that during every 1 s interval, the ball should fall the same distance further.

Mathematically, it means that distance fallen x is proportional to time t, so a plot of x(t) should

give a straight line. This is a beautifully simple idea, logical enough . . . and spectacularly wrong!

Let’s test it with the data we have. All we need to do is figure out the di↵erences in the distances

between successive measurements �x, since all the measurements are separated by 1 s. Generally

speaking, when we write a something like �x, the � implies a change in the quantity x:

�x = change in x = x(t2)- x(t1) (1.1)

where the notation x(t1) indicates position x measured at time t1 and x(t2) indicates a mea-

surement at time t2 so it is clear that (1) x is a function of time t, (2) t2 and t1 represent two

di↵erent times, and (3) the position is measured at these two di↵erent times.

In fact, this change of position �x per time interval �t would be the slope of the x(t) graph.

Specifying this slope or rate of change �x/�t, as opposed to just the distance covered �x, has the

advantage of not tying us to any particular time interval �t, the rate of change already accounts

for how long one waits between measurements.

time distance rate distance changed
t (s) x (m) �x/�t (m/s)

0 0 –
1 5 5
2 20 15
3 45 25
4 80 35
5 125 45

Table 1.2: The rate at which the ball’s position changes dur-

ing every increment of time.

Clearly, our hypothesis is not true – the ball falls even farther in a given second the longer

it has been falling! On the other hand, we notice something interesting now, the rate of change is

increasing at a steady rate. In fact, we could describe the increase in the rate of change perfectly

with the equation

�x

�t

= 10t- 5 (1.2)
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look carefully
• The rate of position change also increases
• This rate of change is velocity – it also increases

• but it increases by the same amount each second!
• suggests its rate of change is constant.

© 2015 Pearson Education, Inc.

A data-driven approach

Chapter 1. Motion in 1D

tested or disproven, what’s the point? One possible hypothesis (which turns out to be false) might

be:

Possible hypothesis for motion of a falling object:

For every increment of time �t, the ball falls the same distance �x. Mathematically, that

implies �x/�t, or that �x versus �t is a straight line. (False)

This basically says that during every 1 s interval, the ball should fall the same distance further.

Mathematically, it means that distance fallen x is proportional to time t, so a plot of x(t) should

give a straight line. This is a beautifully simple idea, logical enough . . . and spectacularly wrong!

Let’s test it with the data we have. All we need to do is figure out the di↵erences in the distances

between successive measurements �x, since all the measurements are separated by 1 s. Generally

speaking, when we write a something like �x, the � implies a change in the quantity x:

�x = change in x = x(t2)- x(t1) (1.1)

where the notation x(t1) indicates position x measured at time t1 and x(t2) indicates a mea-

surement at time t2 so it is clear that (1) x is a function of time t, (2) t2 and t1 represent two

di↵erent times, and (3) the position is measured at these two di↵erent times.

In fact, this change of position �x per time interval �t would be the slope of the x(t) graph.

Specifying this slope or rate of change �x/�t, as opposed to just the distance covered �x, has the

advantage of not tying us to any particular time interval �t, the rate of change already accounts

for how long one waits between measurements.

time distance rate distance changed
t (s) x (m) �x/�t (m/s)

0 0 –
1 5 5
2 20 15
3 45 25
4 80 35
5 125 45

Table 1.2: The rate at which the ball’s position changes dur-

ing every increment of time.

Clearly, our hypothesis is not true – the ball falls even farther in a given second the longer

it has been falling! On the other hand, we notice something interesting now, the rate of change is

increasing at a steady rate. In fact, we could describe the increase in the rate of change perfectly

with the equation

�x

�t

= 10t- 5 (1.2)
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a new hypothesis

© 2015 Pearson Education, Inc.

A data-driven approach

Hypothesis 2: The rate at which the velocity changes is 
constant.

Finding a constant of motion is a big deal.

No matter what happens, this thing doesn’t change. It 
must be kind of a big deal.
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try it

© 2015 Pearson Education, Inc.

A data-driven approach

Chapter 1. Motion in 1D

time distance average velocity rate velocity changes
t (s) x (m) v (m/s) �v/�t (m/s

2)

0 0 – –
1 5 5 –
2 20 15 10
3 45 25 10
4 80 35 10
5 125 45 10

Table 1.3: The rate at

which the ball’s average veloc-

ity changes during every incre-

ment of time.

Possible hypothesis for motion of a falling object, #2:

The rate at which the velocity changes for a falling object is a constant. (True)

Equivalent hypothesis for motion of a falling object, #2:

The acceleration for a falling object is a constant. (True)

The rate of average velocity change with time has units of (m/s)/s, or m/s

2, and this quantity

is what we usually call average acceleration a. For a falling object, it is about 10m/s

2, and

apparently a constant for the entire motion.

a =
�v

�t

= average acceleration (1.5)

Again, the “average” here means that we have calculated the rate of change over some discrete

interval in time, rather than at a single instant. As we did with velocity, we can take the limit

�t!0 to find an instantaneous acceleration a, rather than using discrete time di↵erences:

a = lim
�t!0

�v

�t

⌘ dv

dt

=
d

dt

dx

dt

=
d

2
x

dt

2
instantaneous acceleration (1.6)

Thus, acceleration is the time rate of change of velocity, or the slope of the v versus t graph,

which is itself the time rate of change of position. We can now state our correct hypothesis

mathematically:

Hypothesis for motion of a falling object, #2:

The acceleration d

2
x

dt

2 =
dv

dt

is constant for a falling object. (True)

If we had started with the assumption of constant acceleration (for some reason), we would

be able to derive the velocity and position as a function of time simply by integrating. First, we

Indeed! The position and velocity continuously 
increase, but the rate of velocity change is constant. 

This is acceleration:
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what did we figure out?
• The rate of change of velocity is (essentially) constant 

for a falling object
• We call this rate of change acceleration
• Velocity increases linearly with time
• Since x=dv/dt, this means x(t) increases quadratically

© 2015 Pearson Education, Inc.

A data-driven approach
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Uncertainty analysis
• Is there a good everyday example?
• What good is standard deviation anyway?

© 2015 Pearson Education, Inc.

Tuesday’s lab
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• one measurement vs. many
• how does accuracy improve?
• how to measure accuracy?
• statistical measures of uncertainty & 

dispersion

• if you don’t see the whole deck at once, 
what can you still say?

An example: counting cards
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Problem

University of Alabama

Department of Physics and Astronomy

PH 125 / LeClair Fall 2014

Problem Set 1 Solutions

1. Water is poured into a container that has a leak. The mass m of the water is as a function of

time t is

m = 5.00t

0.8 ≠ 3.00t + 20.00

with tØ0, m in grams, and t in seconds. At what time is the water mass greatest?

Solution: Given: Water mass versus time m(t).

Find: The time t at which the water mass m is greatest. This can be accomplished by finding the

time derivative of m(t) and setting it equal to zero, followed by checking the second derivative to

be sure we have found a maximum.

Sketch: It is useful to plot the function m(t) and graphically estimate about where the maximum

should be, roughly.

i

Figure 1: Water mass versus time, problem 1. Note the rather expanded vertical axis, with o�set origin.

It is clear that there is indeed a maximum water mass, and it occurs just after t=4 s.

i
It is relatively easy to do this on a graphing calculator, which can be found online these days: http://www.

coolmath.com/graphit/.
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University of Alabama

Department of Physics and Astronomy

PH 125 / LeClair Fall 2014

Problem Set 1 Solutions

1. Water is poured into a container that has a leak. The mass m of the water is as a function of

time t is

m = 5.00t

0.8 ≠ 3.00t + 20.00

with tØ0, m in grams, and t in seconds. At what time is the water mass greatest?

Solution: Given: Water mass versus time m(t).

Find: The time t at which the water mass m is greatest. This can be accomplished by finding the

time derivative of m(t) and setting it equal to zero, followed by checking the second derivative to

be sure we have found a maximum.

Sketch: It is useful to plot the function m(t) and graphically estimate about where the maximum

should be, roughly.

i
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Figure 1: Water mass versus time, problem 1. Note the rather expanded vertical axis, with o�set origin.

It is clear that there is indeed a maximum water mass, and it occurs just after t=4 s.

i
It is relatively easy to do this on a graphing calculator, which can be found online these days: http://www.

coolmath.com/graphit/.

Solution
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Solution (contd.)

Relevant equations: We need to find the maximum of m(t). Therefore, we need to set the first

derivative equal to zero. We must also check that the second derivative is negative to ensure that

we have found a maximum, not a minimum. Therefore, only two equations are needed:

dm

dt

=

d

dt

[m(t)] = 0 and

d

2

m

dt

2

=

d

2

dt

2

[m(t)] < 0 =∆ maximum in m(t)

Symbolic solution:

dm

dt

=

d

dt

Ë
5t

0.8 ≠ 3t + 20

È
= 0.8

1
5t

0.8≠1

2
≠ 3 = 4t

≠0.2 ≠ 3 = 0

4t

≠0.2 ≠ 3 = 0

t

≠0.2

=

3

4

=∆ t =

3
3

4

4≠5

=

3
4

3

4
5

Thus, m(t) takes on an extreme value at t=(4/3)

5

. We did not prove whether it is a maximum or

a minimum however! This is important . . . so we should apply the second derivative test.

Recall briefly that after finding the extreme point of a function f(x) via df/dx|
x=a

= 0, one should

calculate d

2

f/dx

2|
x=a

: if d

2

f/dx

2|
x=a

< 0, you have a maximum, if d

2

f/dx

2|
x=a

> 0 you have a

minimum, and if d

2

f/dx

2|
x=a

=0, the test basically wasted your time. Anyway:

d

2

m

dt

2

=

d

dt

5
dm

dt

6
=

d

dt

Ë
4t

≠0.2 ≠ 3

È
= ≠0.2

1
4t

≠0.2≠1

2
= ≠0.8t

≠1.2

d

2

m

dt

2

< 0 ’ t > 0

Since t

≠1.2

is always positive for t>0,

d

2
m

dt

2 is always less than zero

ii

, which means we have indeed

found a maximum.

Numeric solution: Evaluating our answer numerically, remembering that t has units of seconds

(s):

t =

3
4

3

4
5

¥ 4.21399

sign.≠≠≠æ
digits

4.21 s

The problem as stated has only three significant digits, so we round the final answer appropriately.

Double check: From the plot above, we can already graphically estimate that the maximum is

somewhere around 4

1

4

s, which is consistent with our numerical solution to 2 significant figures.

ii
You can read the symbol ’ above as “for all." Thus, ’ t>0 is read as “for all t greater than zero.”
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Solution (contd.) 

Relevant equations: We need to find the maximum of m(t). Therefore, we need to set the first

derivative equal to zero. We must also check that the second derivative is negative to ensure that

we have found a maximum, not a minimum. Therefore, only two equations are needed:

dm

dt

=

d

dt

[m(t)] = 0 and

d

2

m

dt

2

=

d

2

dt

2

[m(t)] < 0 =∆ maximum in m(t)

Symbolic solution:

dm

dt

=

d

dt

Ë
5t

0.8 ≠ 3t + 20

È
= 0.8

1
5t

0.8≠1

2
≠ 3 = 4t

≠0.2 ≠ 3 = 0

4t

≠0.2 ≠ 3 = 0

t

≠0.2

=

3

4

=∆ t =

3
3

4

4≠5

=

3
4

3

4
5

Thus, m(t) takes on an extreme value at t=(4/3)

5

. We did not prove whether it is a maximum or

a minimum however! This is important . . . so we should apply the second derivative test.

Recall briefly that after finding the extreme point of a function f(x) via df/dx|
x=a

= 0, one should

calculate d

2

f/dx

2|
x=a

: if d

2

f/dx

2|
x=a

< 0, you have a maximum, if d

2

f/dx

2|
x=a

> 0 you have a

minimum, and if d

2

f/dx

2|
x=a

=0, the test basically wasted your time. Anyway:

d

2

m

dt

2

=

d

dt

5
dm

dt

6
=

d

dt

Ë
4t

≠0.2 ≠ 3

È
= ≠0.2

1
4t

≠0.2≠1

2
= ≠0.8t

≠1.2

d

2

m

dt

2

< 0 ’ t > 0

Since t

≠1.2

is always positive for t>0,

d

2
m

dt

2 is always less than zero

ii

, which means we have indeed

found a maximum.

Numeric solution: Evaluating our answer numerically, remembering that t has units of seconds

(s):

t =

3
4

3

4
5

¥ 4.21399

sign.≠≠≠æ
digits

4.21 s

The problem as stated has only three significant digits, so we round the final answer appropriately.

Double check: From the plot above, we can already graphically estimate that the maximum is

somewhere around 4

1

4

s, which is consistent with our numerical solution to 2 significant figures.

ii
You can read the symbol ’ above as “for all." Thus, ’ t>0 is read as “for all t greater than zero.”
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Problem
same acceleration, the first ball has been accelerating a time T longer. While their relative velocity

is constant (the two velocities will always di�er by gT , the speed the first ball picks up before the

second is dropped), the separation between the two balls increases linearly.

6. Find for me the numerical value I of the following integral, by any means necessary. No work

need be shown for this problem, but do note how you obtained the answer.

I =

1.026955⁄

0

3 sin

1
x

2

2
dx

Solution: There is no analytic solution to this integral. You’ll need a numerical technique, the

simplest of which is to ask Wolfram Alpha. Try something like this (clickable link):

http://www.wolframalpha.com/input/?i=integral+of+sin%28x%5E2%29+from+0+to+1.026955

To 6 significant digits, the answer is 1.00000. This is one of the Fresnel Integrals, and they come up

frequently in optics, among other things. http://en.wikipedia.org/wiki/Fresnel_integral
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Solution

same acceleration, the first ball has been accelerating a time T longer. While their relative velocity

is constant (the two velocities will always di�er by gT , the speed the first ball picks up before the

second is dropped), the separation between the two balls increases linearly.

6. Find for me the numerical value I of the following integral, by any means necessary. No work

need be shown for this problem, but do note how you obtained the answer.

I =

1.026955⁄

0

3 sin

1
x

2

2
dx

Solution: There is no analytic solution to this integral. You’ll need a numerical technique, the

simplest of which is to ask Wolfram Alpha. Try something like this (clickable link):

http://www.wolframalpha.com/input/?i=integral+of+sin%28x%5E2%29+from+0+to+1.026955

To 6 significant digits, the answer is 1.00000. This is one of the Fresnel Integrals, and they come up

frequently in optics, among other things. http://en.wikipedia.org/wiki/Fresnel_integral

Try it!


