
University of Alabama

Department of Physics and Astronomy

PH 126 LeClair Fall 2011

PH126: Exam 1

Instructions:

1. Answer four of the five questions below. All problems have equal weight.

2. You must show your work for full credit.

� 1. The circuit below is known as a Wheatstone Bridge, and it is a useful circuit for measuring
small changes in resistance. Perhaps you can figure out why. Three of the four branches on our
bridge have identical resistance R, but the fourth has a slightly different resistance, by an amount
δR such that its total resistance is R+ δR.

In terms of the source voltage Vs, base resistance R and change in resistance δR, what is the reading
on the voltmeter, ∆V? You may assume the voltmeter and voltage source are perfect (drawing no
current and having no internal resistance, respectively).
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Solution: Label the nodes on the bridge a-d, as shown in the figure below, and let a current I1
flow from point d through a to c, and a current I2 flow from d through b to c.

Looking more carefully at the bridge, we notice that it is nothing more than two sets of series
resistors, connected in parallel with each other. This immediately means that the voltage drop
across the left side of the bridge, following nodes d→a→c, must be the same as the voltage drop
across the right side of the bridge, following nodes d→b→c. Both are ∆Vdc, and both must be the
same as the source voltage: ∆Vdc =Vs. If we can find the current in each resistor, then with the
known source potential difference we will know the voltage at any point in the circuit we like, and
finding ∆Vab is no problem.

Let the current from the source Vs be I. This current I leaving the source will at node a split into
the separate currents I1 and I2; conservation of charge requires I=I1 + I2. At node c, the currents
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Labeling notes and currents in the Wheatstone Bridge

recombine into I. On the leftmost branch of the bridge, the current I1 creates a voltage drop I1R
across each resistor. Similarly, on the rightmost branch of the bridge, the resistor R has a voltage
drop I2R and the lower resistor has a voltage drop I2 (R+ δR). Equating the total voltage drop on
each branch of the bridge:

Vs = I1R+ I1R = I2R+ I2 (R+ δR)

=⇒ I1 =
Vs

2R

I2 =
Vs

2R+ δR

Now that we know the currents in terms of known quantities, we can find ∆Vab by “walking” from
point a to point b and summing the changes in potential difference. Starting at node a, we move
toward node d against the current I1, which means we gain a potential difference I1R. Moving from
node d to node b, we move with the current I2, which means we lose a potential difference I2R.
Thus, the total potential difference between points a and b must be

∆Vab = I1R− I2R = R (I1 + I2) = R

(
Vs

2R
−

Vs

2R+ δR

)

∆Vab = Vs

(
1
2

−
R

R+ δR

)
= Vs

(
δR

4R+ 2δR

)

If the change in resistance δR is small compared to R (δR�R), the term in the denominator can
be approximated 4R+ δR ≈ 4R, and we have

∆Vab =
1
4
Vs

(
δR

R

)
(δR� R)

Thus, for small changes in resistance, the voltage measured across the bridge is directly propor-
tional to the change in resistance, which is the basic utility of this circuit: it allows one to measure
small changes on top of a large ‘base’ resistance. Fundamentally, it is a difference measurement,
meaning that one directly measures changes in the quantity of interest, rather than measuring the



whole thing and trying to uncover subtle changes. This behavior is very useful for, e.g., strain
gauges, temperature sensors, and many other devices.

� 2. Three conducting plates are placed parallel to one another as shown below. The outer plates
are connected by a wire. The inner plate is isolated and carries a charge amounting to 10−5 C per
square meter of plate. In what proportion must this charge divide itself into a surface charge σ1

on one face of the inner plate and a surface charge σ2 on the other side of the same plate?
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V2
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σ2 σtot = 10-5 = σ1 + σ2
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Solution: Let’s tackle the specific case first, and then work out the more general case. If we
connect the two outer plates, they are effectively part of the same conductor, and thus they will be
at the same potential. Call that V1. Let the inner plate be at potential V2. Conservation of charge
dictates that the total surface charge on plate two is σ=σ1 + σ2 =10−5 C/m.

In the region between the upper plate and the middle plate, which we will call region I, the total
electric field must be the sum of the field from the upper plate and that of the middle plate.
The field from the middle plate in this region is that of an infinite plate with surface charge σ1,
E=σ1/2εo. The upper plate, under the influence of the top side of the middle plate, will have an
induced charge −σ1. It will contribute the same electric field in the region between the upper and
middle plates,i and in total we have

EI = σ1/2εo + σ1/2εo = σ1/εo (1)

The electric potential between the upper and middle plates must be V2 −V1, and it must be
equivalent to integrating the electric field across the gap between the plates. Since the electric field
is independent of distance, this is easy:

V2 − V1 = −

∫
I

~EI · d~l = El = E (5 cm) = (5 cm)σ1/εo (2)

iThe induced charge on the upper plate is negative, but the field is in the opposite direction.



Proceeding similarly in region II between the lower and middle plates, we find

V2 − V1 = (8 cm)σ2/εo (3)

Dividing the last two equations, we find

(5 cm)σ1/εo = (8 cm)σ2/εo =⇒ σ1

σ2
=

8
5

(4)

Noting σ=σ1 + σ2, we find

σ1 =
8
13
σ σ2 =

5
13
σ (5)

What about the more general case? Let the spacing between the upper and middle plates be d,
and the spacing between the upper and lower plates be D (and thus the spacing between the lower
and middle plates is D−d). Proceeding as above, we still have EI =σ1/εo, and

V2 − V1 = −

∫
I

~EI · d~l = El = Ed = dσ1/εo (6)

In the region between the lower and middle plates, we have EII =σ2/εo, and

V2 − V1 = −

∫
II

~EII · d~l = El = E (D− d) = (D− d)σ2/εo (7)

Thus,

σ1

σ2
=
D− d

d
(8)

Again noting σ=σ1 + σ2,

σ1 =

(
D− d

D

)
σ σ2 =

(
d

D

)
σ (9)

We can find the energy stored by integrating the electric field squared over all space. Outside all
of the plates, ~E = 0. We can break up the integral over the region between the two plates into
an integral over region I and an integral over region II. Since the electric field is constant in each
region, the integrals simply reduce to the volume contained in the region between the two plates.
Assume each plate as an area A.
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1
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1
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1
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∫
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1
2
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∫
I
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1
2
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∫
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σ2

1

2εo
Ad+

σ2
2

2εo
A (D− d) (10)

Now we may substitute σ2 = d
Dσ and σ1 =

(
D−d

d

)
σ:

U =
σ2

1

2εo
Ad+

σ2
2

2εo
A (D− d) =

A

2ε0

[
d

(
D− d

D
σ

)2

+

(
d

D
σ

)2

(D− d)

]

=
Aσ2

2D2ε0

[
d (D− d)2 + d2 (D− d)

]
=

Aσ2

2D2ε0

(
dD2 − 2Dd2 + d3 + d2D− d3

)

∴ U =
Aσ2

2D2ε0

(
dD2 − d2D

)
=
Aσ2

2Dε0

(
dD− d2

)
(11)

We wish to optimize U with respect to d:

dU

dd
=
Aσ2

2Dε0
(D− 2d) = 0 =⇒ d =

D

2
(12)

We can verify this is a maximum potential energy by noting d2U/dd2<0 for all d. A nice result:
maximal energy is stored for a symmetric placement of the middle plate, just what we might have
expected. Another way to approach this problem would be to notice that this is really just two
capacitors connected in series, which leads you to the same result.

� 3. Two graphite rods are of equal length. One is a cylinder of radius a. The other is conical,
tapering linearly from a radius a at one end to radius b at the other. Show that the end-to-end
electrical resistance of the conical rod is a/b times that of the cylindrical rod. Hint: consider the
rod to be made up of thin, disk-like slices, all in series.

Solution: The cylindrical conductor is trivial: if it is of radius a and length l, and has resistivity
ρ, then

Rcyl =
ρl

πa2
(13)

Of course, we don’t know the length l or resistivity ρ, but they will not matter in the end.

What about the cone? Break the cone up into many disks of thickness dx. Stacking these disks up
with increasing radius can build us a cone:
If we start out with a radius a at one end of the cone, and the other end has a radius b, then
the radius as a function of position along the cone is easily determined. Let our origin (x= 0) be



x=0 x= l

a

b

dx

2r

r(x)=a +

(
b − a

l

)
x

the end of the cone with radius a, and assume the cone has a total length l, same as the cylinder.
Again, we will not need this length in the end, but it is convenient now. The radius at any position
along the cone is then

r(x) = a+

(
b− a

l

)
x (14)

If the current is in the x direction, then each infinitesimally thick disk is basically just a tiny segment
of wire with thickness dx and cross-sectional area π [r(x)]2. If we assume the same resistivity ρ,
the resistance of each disk must be

dRcone =
ρdx

π [r(x)]2
=

ρdx

π
(
a+

(
b−a

l

)
x
)2 (15)

The total resistance of the cone is found by integrating over all such disks, from x=0 to the end of
the cone at x= l. For convenience, let c=(b− a) /l.

Rcone =

∫
dRcyl =

l∫
0

ρdx

π (a+ cx)2
=
ρ

π

[
−1

c (a+ cx)

]l

0

=
ρ

π

[
−1
cb

−
−1
ca

]
=
ρ

πc

[
b− a

ab

]
=

ρl

πab

(16)

Here we have a nice result: the resistance of a cone is the same as a resistance of a cylinder whose
radius is the geometric mean cone’s radii. That is, if we substitute a2→ab in our usual formula for
the resistance of a cylinder, we have the result for a cone. Anyway: the desired result now follows
readily,

Rcone

Rcyl
=
a

b
(17)



� 4. Three protons and three electrons are to be placed at the vertices of a regular octahedron of
edge length a. We want to find the potential energy of the system, or the work required to assemble
it starting with the particles infinitely far apart. There are essentially two different arrangements
possible. What is the energy of each? Symbolic answer, please.

Figure 1: An octahedron. It has eight faces and six vertices.

Solution: Using the principle of superposition, we know that the potential energy of a system of
charges is just the sum of the potential energies for all the unique pairs of charges. The problem
is then reduced to figuring out how many different possible pairings of charges there are, and what
the energy of each pairing is. The potential energy for a single pair of charges, both of magnitude
q, separated by a distance d is just:

PEpair =
keq

2

d

First, we need figure out how many pairs there are for charges arranged on the vertices of an octa-
hedron, and for each pair, how far apart the charges are. Once we’ve done that, we need to figure
out the two different arrangements of charges and run the numbers.

How many unique pairs of charges are there? There are not so many that we couldn’t just list
them by brute force – which we will do anyway to calculate the energy – but we can also calculate
how many there are. In both distinct configurations, we have 6 charges, and we want to choose all
possible groups of 2 charges that are not repetitions. So far as potential energy is concerned, the pair
(2, 1) is the same as (1, 2). Pairings like this are known as combinations, as opposed to permutations
where (1, 2) and (2, 1) are not the same. Calculating the number of possible combinations is done
like this:ii

ways of choosing pairs from six charges =

(
6
2

)
= 6C2 =

6!
2! (6 − 2)!

=
6 · 5 · 4 · 3 · 2 · 1
2 · 1 · 4 · 3 · 2 · 1

= 15

iiA nice discussion of combinations and permutations is here: http://www.themathpage.com/aPreCalc/

permutations-combinations.htm

http://www.themathpage.com/aPreCalc/permutations-combinations.htm
http://www.themathpage.com/aPreCalc/permutations-combinations.htm


We can verify this by simply enumerating all the possible pairings. Label the charges at each vertex
in some fashion, such as this:

q1

q2

q3

q4

q5

q6

We have six charges at six vertices, and thus 6C2 = 6!
2!4! =15 unique pairings of charges. Namely,

q1q2, q1q3,q1q4,q1q5,q1q6

q2q3, q2q4,q2q5,q2q6

q3q4,q3q5,q3q6

q4q5,q4q6

q5q6

Here all the qi have the same magnitude, the labels are just to keep things straight. At a given
vertex, all four nearest-neighbor vertices are at distance a, while the single “next-nearest neighbor”
is at a distance a

√
2. This means that there are three pairs charges which are separated by a

distance a
√

2, and the other twelve pairings are at a distance a. We have highlighted the a
√

2
pairings above. How can we find two different arrangements? Since there are an odd number of next-
nearest neighbor pairings, the first suspicion is that the difference between the two arrangements will
be in next-nearest neighbor pairings. If you experiment for a while, the two different arrangements
are these:

+

-

-

-

+

+
+

-

-

+

+

-

A B

Now we need only add up the potential energies of all possible pairs of charges. All the nearest-



neighbor pairs will have the same energy, viz.,

|Unn| =
kq2

a
(18)

All the next-nearest neighbor pairs will have

|Unnn| =
kq2

a
√

2
(19)

For the first arrangement we have 12 nearest-neighbor pairs: eight of them are +− pairings, and
four of them are ++ or −− pairs. We have three next-nearest neighbor pairs, two ++ or −−, and
one +−. Thus, the total energy must be

UA = 8
[
−kq2

a

]
+4
[
kq2

a

]
+2
[
kq2

a
√

2

]
+1
[
−kq2

a
√

2

]
=
kq2

a

[
1√
2

− 4
]

=

[
1√
2

− 4
]

|Unn| ≈ −3.29|Unn|

(20)

For the second arrangement, of the 12 nearest-neighbor pairs we have six +− pairs and six ++ or
−− pairs, and thus the total energy of nearest-neighbor pairs will be zero. We are left with only
the next-nearest neighbor terms, and for this arrangement, all three are +− pairs. Thus,

UB = −3
kq2

a
√

2
=

3√
2
|Unn| ≈ −2.12|Unn| (21)

Thus, UA < UB, and the first lattice is more stable, owing to its lower nearest-neighbor energy.
Though the second lattice has a smaller next-nearest neighbor energy, there are fewer next-nearest
neighbor pairs, and their energy is smaller than the nearest neighbor pairs. Usually, minimizing the
nearest-neighbor energy gives the most stable crystal, simply because the potential is decreasing
with distance.

� 5. Show that the expression Q2/2C is the energy stored in a spherical capacitor (two concentric
hollow metal spheres) by integrating the energy density u = 1

2εoE
2 over the region between the

spheres. Use the volume between two spheres or radius r and r+dr as a volume element.


