University of Alabama
 Department of Physics and Astronomy

Problem Set 1

Instructions:

1. Answer all questions below. All questions have equal weight. Show your work for full credit.
2. All problems are due Friday 26 August 2011 by $11: 59$ pm.
3. You may collaborate, but everyone must turn in their own work.
4. Water is poured into a container that has a leak. The mass m of the water is as a function of time t is

$$
m=5.00 t^{0.8}-3.00 t+20.00
$$

with $t \geqslant 0, m$ in grams, and t in seconds. At what time is the water mass greatest?
2. Find the angle between the body diagonals of a cube. Use one of the vector products.
3. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{x}}-\hat{\mathbf{y}}+\hat{\mathbf{z}}, \overrightarrow{\mathbf{b}}=2 \hat{\mathbf{x}}-\hat{\mathbf{y}}$, and $\overrightarrow{\mathbf{c}}=3 \hat{\mathbf{x}}+5 \hat{\mathbf{y}}-7 \hat{\mathbf{z}}$, verify the identity

$$
\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}
$$

4. At each corner of a square is a particle with charge q. Fixed at the center of the square is a point charge with opposite sign, of magnitude Q. What value must Q have to make the total force on each of the four particles zero? With Q set at that value, the system, in the absence of other forces, is in equilibrium. Do you think the equilibrium is stable?
