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Problem Set 1: solutions

1. Water is poured into a container that has a leak. The mass m of the water is as a function of
time t is

m = 5.00t0.8 − 3.00t+ 20.00

with t>0, m in grams, and t in seconds. At what time is the water mass greatest?

Solution: Given: Water mass versus time m(t).

Find: The time t at which the water mass m is greatest. This can be accomplished by finding the
time derivative of m(t) and setting it equal to zero, followed by checking the second derivative to
be sure we have found a maximum.

Sketch: It is useful to plot the function m(t) and graphically estimate about where the maximum
should be, roughly.i
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Figure 1: Water mass versus time, problem 1. Note the rather expanded vertical axis, with offset origin.

It is clear that there is indeed a maximum water mass, and it occurs just after t=4 s.

iIt is relatively easy to do this on a graphing calculator, which can be found online these days: http://www.
coolmath.com/graphit/.

http://www.coolmath.com/graphit/
http://www.coolmath.com/graphit/


Relevant equations: We need to find the maximum of m(t). Therefore, we need to set the first
derivative equal to zero. We must also check that the second derivative is negative to ensure that
we have found a maximum, not a minimum. Therefore, only two equations are needed:

dm

dt
=
d

dt
[m(t)] = 0 and d2m

dt2
=
d2

dt2
[m(t)] < 0 =⇒ maximum in m(t)

Symbolic solution:

dm

dt
=
d

dt

[
5t0.8 − 3t+ 20

]
= 0.8

(
5t0.8−1)− 3 = 4t−0.2 − 3 = 0

4t−0.2 − 3 = 0

t−0.2 =
3
4

=⇒ t =

(
3
4

)−5
=

(
4
3

)5

Thus, m(t) takes on an extreme value at t=(4/3)5. We did not prove whether it is a maximum or
a minimum however! This is important . . . so we should apply the second derivative test.

Recall briefly that after finding the extreme point of a function f(x) via df/dx|x=a= 0, one should
calculate d2f/dx2|x=a: if d2f/dx2|x=a< 0, you have a maximum, if d2f/dx2|x=a> 0 you have a
minimum, and if d2f/dx2|x=a=0, the test basically wasted your time. Anyway:

d2m

dt2
=
d

dt

[
dm

dt

]
=
d

dt

[
4t−0.2 − 3

]
= −0.2

(
4t−0.2−1) = −0.8t−1.2

d2m

dt2
< 0 ∀ t > 0

Since t−1.2 is always positive for t>0, d2m
dt2 is always less than zeroii, which means we have indeed

found a maximum.

Numeric solution: Evaluating our answer numerically, remembering that t has units of seconds
(s):

t =

(
4
3

)5
≈ 4.21399 sign.−−−→

digits
4.21 s

The problem as stated has only three significant digits, so we round the final answer appropriately.

iiYou can read the symbol ∀ above as “for all." Thus, ∀ t>0 is read as “for all t greater than zero.”



Double check: From the plot above, we can already graphically estimate that the maximum is
somewhere around 41

4 s, which is consistent with our numerical solution to 2 significant figures.
The dimensions of our answer are given in the problem, so we know that t is in seconds. Since we
solved dm/dt(t) for t, the units must be the same as those given, with t still in seconds – our units
are correct.

2. Find the angle between the body diagonals of a cube. Use one of the vector products.

Solution: Put one corner of the cube at the origin, and let it extend in the region where x,y, z
are positive, such that it has vertices at (000), (100), (110), (010), (101), (001), (011), and (111).
We could represent two body diagonals by the vectors

~A = ı̂ + ̂ − k̂
~B = ı̂ + ̂ + k̂

Note that for ~A one should translate the whole vector by 1 unit along k̂ for both diagonals to be
within the cube. You should make a sketch to be sure you understand the geometry here. We can
use the scalar (“dot”) vector product to find the angle θ between the diagonals:

cos θ =
~A · ~B
|~A||~B|

=
1 + 1 − 1√

3
√

3
=

1
3 =⇒ θ = cos−1

(
1
3

)
≈ 70.5◦

3. If ~a= ı̂ − ̂ + k̂, ~b= 2̂ı − ̂, and ~c= 3̂ı + 5̂ − 7k̂, verify the identity

~a ×
(
~b×~c

)
= (~a ·~c)~b −

(
~a ·~b

)
~c

Solution: We just need to grind through it. For the left-hand side:

~b×~c =

∣∣∣∣∣∣∣
ı̂ ̂ k̂
2 −1 0
3 5 −7

∣∣∣∣∣∣∣ = 7̂ı + 14̂ + 13k̂

~a ×
(
~b×~c

)
=

∣∣∣∣∣∣∣
ı̂ ̂ k̂
1 −1 1
7 14 13

∣∣∣∣∣∣∣ = −27̂ı + −6̂ + 21k̂

For the right-hand side:



~a ·~c =
(̂
ı − ̂ + k̂

)
·
(

3̂ı + 5̂ − 7k̂
)

=

 1
−1

1

[3 5 −7
]

= 3 − 5 − 7 = −9

(~a ·~c)~b = −9~b = −18̂ı + 9̂

~a ·~b =

 1
−1

1

[2 −1 0
]

= 2 + 1 = 3

(
~a ·~b

)
~c = 3~c = 9̂ı + 15̂ − 21̂ı

(~a ·~c)~b −
(
~a ·~b

)
~c = −27̂ı − 6̂ + 21k̂ = ~a ×

(
~b×~c

)

4. At each corner of a square is a particle with charge q. Fixed at the center of the square is a
point charge with opposite sign, of magnitude Q. What value must Q have to make the total force
on each of the four particles zero? With Q set at that value, the system, in the absence of other
forces, is in equilibrium. Do you think the equilibrium is stable?

Solution: The configuration of interest is thus:

q1 q2

q3 q4

-Q

Clearly, the four charges on the corners all have the same force, so we need only worry about the
force on a single charge. Let the length of the square’s side be a. Let the ̂ direction be upward,
and the ı̂ direction be to the right. On charge 1, charges 2, 3, and 4 all give a repulsive force, while
the charge −Q gives an attractive force. Charges 2 and 3 are a distance a away, charge 4 is a

√
2

away, and the −Q charge is a
√

2/2 away. The forces from charges 2 and 3 are purely along the ı̂

and ̂ directions, respectively:



~F3 =
keq1q3
a2 ̂ (1)

~F2 = −
keq1q2
a2 ı̂ (2)

Charge 4 exerts a force on charge 1 along the square diagonal:

~F4 = −
keq1q4

2a2 cos 45 ı̂ +
keq1q4

2a2 sin 45 ̂ =

√
2keq1q4

4a2 (−ı̂ + ̂) (3)

The −Q charge works out the same way as q4, but at half the distance:

~F−Q =

√
2keq1Q

a2 (̂ı − ̂) (4)

Now we have all the relevant forces. We need both the x and y components to vanish, but the
symmetry of the problem makes the x and y directions equivalent. Thus, we can balance either one
of them and be certain the other is as well – the equations are the same for the x and y directions.
Picking the x direction arbitrarily,

∑
Fx = F2x + F4x + F−Qx = −

keq1q2
a2 −

k3q1q4
a2

√
2

4 +
keq1Q

a2

√
2 = 0 (5)

0 =
ke

a2

[
−q1q2 − q1q4

√
2

4 + q1Q2
√

2
]

(6)

Since the four corner charges are all equivalent, we can just call them q:

0 = −q2 −

√
2

4 q2 +
√

2qQ (7)

Q =

(
1√
2

+
1
4

)
q ≈ 0.957q (8)

Is this a stable equilibrium? If so, the system should be stable against small displacements of any
given charge. Strictly, we should find the potential energy with the center charge displaced by some
amount δ, and show that the potential energy is larger. However, qualitatively we can see that
the equilibrium is unstable. Consider a tiny displacement of the central charge: any movement
will bring it slightly closer to one of the corner charges, which will make it even more attracted to
that corner. The central charge will rapidly be pulled toward one corner with even an infinitesimal
displacement away from the exact center. A similar argument holds for displacing one of the corner
charges. The system as drawn is indeed in an equilibrium state, but since the tiniest infinitesimal
perturbation will destroy the given configuration, the equilibrium is unstable.


