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1. A charge of 1µC is at the origin. A charge of −2µC is at x=1 on the x axis.
(a) Find the point on the x axis where the electric field is zero.
(b) Locate, at least approximately, a point on the y axis here the electric field is parallel to the x
axis [a calculator should help].

Solution: Consider a charge q1 at the origin and a charge q2 at position xo>0 on the x axis. We
will assume |q2|> |q1|, q1>0 and q2<0.

First, we need to do the physics before we get to any math. Where could the field be zero along
the x axis? In the region between the two charges, the positive charge q1 gives a field in the x̂

direction, and the negative charge q2 also gives a field in the x̂ direction. Since both fields act in
the same direction, they cannot possibly cancel each other.

How about for x>xo (i.e., to the right of the negative charge)? Well, in this region we are farther
from q1 than we are q2, so the field from q1 is smaller than that of q2. Further, if |q2| > |q1|,
the field of q1 is smaller to start with, even at the same distance. Even though the fields are in
opposite directions, since they decay as 1/x2 and q1 is smaller and farther away, the two fields
cannot possibly cancel each other.

We are left with x<0. This makes sense: the two fields are in opposite directions, and we are closer
to the smaller charge. The smaller field at a given distance can be compensated by simply getting
closer to the smaller charge. Let us consider a position −x along the x axis, which means we are a
distance x from q1 and x+ xo from q2. The total field is then:

E = E1 + E2 =
kq1

x2
+

kq2

(x+ xo)2
(1)

Keep in mind q2 is negative. We desire E=0. Thus,

kq1

x2
= −

kq2

(x+ xo)2
(2)

Since we already know our point of interest along the negative x axis, we can just take the square
root of both sides and solve this thing quickly – we don’t need to worry about the ± since we
already figured that part out. Thus,
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With the numbers given,

x =
1√

2 − 1
= −
√

2 − 1 ≈ −2.4 m (4)

For the next part, we want a point along the y axis where the field is purely in the horizontal
direction. If that is to be true, then we must find a point where the y components of the field from
each charge exactly balance. From the charge q1 this is easy: if we are a distance y along the y
axis, then

E1y =
kq1

y2
(5)

The charge q2 is at a distance
√
x2
o + y2 from the same point on the y axis. Its field in the

y direction is then found similarly, accounting for the geometric factor sinθ to pick out the y
component.
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x2
o + y2

sin θ =
kq2

x2
o + y2

y√
x2
o + y2

=
kq2y

(x2
o + y2)3/2

(6)

We need E1y=−E2y for the net vertical field to be zero (resulting in a purely horizontal field):

E1y = −E2y (7)
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=
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Clearly, by symmetry there are two equivalent points along the y axis, so our ± makes sense here.

2. Two long, thin parallel rods, a distance 2b apart, are joined by a semicircular piece of radius b,
as shown below. Charge of uniform linear density λ is deposited along the whole filament. Show
that the field ~E of this charge distribution vanishes at point C. One way to do this is by comparing
the contribution of the element at A to that of the element at B which is defined by the same values
of θ and dθ.
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Figure 1: Problem 2.

Solution: A tiny segment of the circular part ds will have charge dq, giving rise to a field at C
which points to the right at an angle θ. If we define vertical to be angle equal to zero, building
up the entire semicircle means running the angle from 0 to π. Let’s redraw the figure with more
detail:
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Figure 2: Problem 2, moreso.

Now consider first the contributions from the two line charges. A tiny segment ds′ of the upper
line will have charge dq′, giving rise to a field dE′ at C which points to the left at angle θ. Here,
the angle θ is defined relative to the vertical, so building the entire upper line means running θ



from 0 to π/2. Building the lower line is the same construction, except now we run θ from π/2 to
π. Thus, building both line charges runs over the same angular range as building the semicircle, so
we may consider the lines together. Now we need to write down the field contributions dE and dE′

from the semicircle and line charges.

By symmetry, the vertical component of the field clearly cancels - for both wires and semicircle, any
segment giving a vertical component to the field will have a partner giving an equal and opposite
vertical component. Thus, we need only write down the horizontal component of the field for line
and semicircle; let us call that the x direction, with positive x toward the right. For the semicircle, a
segment of length ds has charge dq=λds. For a circle, arclength is angle times radius, so ds=r dθ
and dq = λr dθ. The horizontal component of the field from a segment of the semicircle is then
readily found:

dEx = −
kdq

b2
sin θ = −

kλdθ

b
sin θ (13)

Here the minus sign reminds us that the field points to the left. For an arbitrary line segment ds′,
the infinitesimal length can be found be considering the distance s′ from C to the segment:

s′ = b tan θ (14)

ds′

dθ
= b sec2 θ (15)

ds′ = b sec2 θdθ (16)

The charge dq′ is then just λds′. This bit of charge is a distance r′ =b/ cos θ=b sec θ away from
C, so the field is easy to find:

dE′
x =

kdq′

(r′)2
sin θ =

kλb sec2 θdθ

b2 sec2 θ
sin θ =

kλdθ

b
sin θ (17)

Thus, dE′
x=−dEx. Since there is a 1:1 mapping between segments of the two lines and segments of

the semicircle, the field vanishes. That is, the horizontal component of the field from a line segment
and a semicircle segment cancel each other, and there are the same number of each, so everything
cancels, the field vanishes.
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3. A slab of insulating material, infinite in two of its three
dimensions, has a uniform positive charge density ρ, shown at
left. (a) Show that the magnitude of the electric field a distance
x from the center and inside the slab is E=ρx/ε0. (b) Suppose
an electron of charge −e and mass me can more freely within
the slab. It is released from rest at a distance x from the center.
Show that the electron exhibits simple harmonic motion with a
frequency

f =
1

2π

√
ρe

meε0

Solution: Consider a cylindrical shaped Gaussian surface perpendicular to the yz plane, as shown
below. One circular face is in the yz plane, and the other is a distance x in the positive x̂ direction.

y

x

x

We know that for a thin slab of charge, the electric field must be perpendicular to the surface of
the slab, or along the x̂ direction in this case. Further, by symmetry the field must be zero exactly
at the center of the slab, where we have placed the left-most end cap. If we apply Gauss’ law to
this surface, the net flux is non-zero only through the rightmost end cap of the cylinder. Thus, if
we call the area of the cylinder’s end cap Aend cap,∮

~E · n̂dA = EAend cap

The amount of charge contained in the Gaussian cylinder is just the charge density of the slab
times the volume of the cylinder, xAend cap, so



EAend cap =
ρAend cap x

εo
=⇒ E =

ρx

εo

Fair enough. What is the force on an electron placed at a distance x? We know it is the electron’s
charge −e times the electric field at x, and if this is the only force acting, it must equal the electron’s
mass me times the resulting acceleration.

~F = −e~E =
−eρx

εo
x̂ = me~a

Thus, the acceleration must be in the x̂ direction, and it is proportional to the electron’s position
x. How do we show that simple harmonic motion results? We just did! Recall from mechanics that
simple harmonic motion occurs whenever we can show that a system’s acceleration are related by
some constant −ω2, viz., a = −ω2x.i If this is true, then ω is the angular frequency of oscillation,
and ω = 2πf. Rewriting the equation above, dropping the now redundant vector notation,

a =
d2x

dt2
= −

eρ

meεo
x

=⇒ ω =

√
eρ

meεo
and f =

1
2π

√
eρ

meεo

4. Imagine a sphere of radius a filled with negative charge of uniform density, the total charge
being equivalent to that of two electrons. Imbed in this jelly of negative charge two protons and
assume that in spite of their presence the negative charge distribution remains uniform. Where
must the protons be located so that the total force on each of them is zero? (This is a surprisingly
realistic model of a hydrogen atom; the magic that keeps the electron cloud in the molecule from
collapsing around the protons is explained by quantum mechanics!

Solution: The protons should be placed at a distance a/2 from the center of the sphere of negative
charge, symmetric about the sphere’s midpoint.

The forces on the protons from each other will be equal and opposite. Therefore, the forces on
them from the negative charge distribution must be equal and opposite also. This requires that
they lie on a line through the center and are equidistant from the center. The force on each proton
at radius r from the negative charge will be proportional to the amount of negative charge lying
inside a sphere of radius r. For purposes of finding the electric field, we may treat all of this charge

iSomewhat more precisely, we want to show that the differential equation d2x/dt2 =−ω2x is obeyed, which has
the simplest physical solution x(t) = A cos (ωt+ δ).



as if it were a point charge sitting in the center. We ignore all negative charge outside the radius
of the proton positions. The negative charge inside the radius r is:

q(r) = −2e
(

volume enclosed by sphere of radius r
total volume

)
= −2e

(
4
3πr

3

4
3πa

3
0

)

= −
2er3

a3
0

This charge q(r) will give an electric field at the position of each proton. Since the charge q(r) is
spherically symmetric, it will be the same as the field from a point charge q(r) at a distance r:

E(r) =
keq(r)

r2
= −

2eker3

a3
0r

2
= −

2keer
a3

0

The force on each proton must be zero, the sum of the attractive force due to the charge q(r)

and the repulsive force from the other proton. Since a proton has a charge e, the attractive force
is qE(r). The repulsive force between the protons is easily calculated noting their charge e and
separation 2r:

∑
F = eE(r) +

kee
2

(2r)2
= −

2kee2r
a3

0

+
kee

2

4r2
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=⇒ 2kee2r
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0

=
kee

2

4r2

8kee2r3 = e2kea
3
0

r =
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5. (a) Twelve equal charges q are situated at the corners of a regular 12-sided polygon (for instance,
one on each numeral of a clock face). What is the net force on a test charge Q at the center?
(b) Suppose one of the 12 q’s is removed (say, the one at 6 o’clock). What is the force on Q? Use
superposition . . . and explain your reasoning carefully.

Solution: When there are charges on every position of the clock, all the forces cancel by symmetry
– for each charge, there is another directly opposite the center of the clock that gives an equal and
opposite contribution to the net force on Q. When one is missing, the charge opposite the missing
one is no longer canceled, meaning there is a net force due to a single q on the center charge Q,
pointing toward the missing charge: F = kqQ/r2. Alternatively, you could imagine that we “re-



moved” the 6 o’clock charge by putting a −q charge right on top of it. All the positive charges still
cancel, but we’d have a extra −q pulling the center charge Q toward it.

Now a question: would it still work out out if there were 13 charges on a 13-sided polygon, where
the symmetry isn’t quite as obvious?

6. (a) Find the electric field a distance z above the center of a flat circular disk of radius R which
carries a uniform surface charge σ.
(b) What happens in the limits R→∞ and z�R? Comment on the mathematical and physical
nature of those limits.

Solution: We can break the disk up into tiny little annular slices, as in the figure below.ii Each
little patch of area dA is defined by an angular spread dθ and a radial width dr. If the little patches
are infinitesimally small, then the outer and inner curved surfaces have essentially the same length,
the arclength ds=r dθ. This makes the area

dA = r dr dθ (18)

If the charge per unit area is σ, then each patch has charge dq=σdA. What is the field contribution
from each dq? By symmetry, the lateral components of the field (x and y) will vanish, leaving only
a vertical (z) component. Each dq is a distance

√
r2 + z2 from the point of interest. Picking out

the vertical component means multiplying by cosϕ=z/
√
r2 + z2, so each dq contributes a vertical

field

dEz =
kdq

r2 + z2
cosϕ =

kσrdr dθ

r2 + z2
z√

r2 + z2
=
kσzr dr dθ

(r2 + z2)3/2
(19)

Building up the whole disk means running the angle θ from 0 to 2π, an the radius from 0 to R, the
total radius of the disk. Thus, we integrate dEz with respect to θ and r over those limits to get the
total vertical field Ez. The θ integral is trivial, since there is no θ dependence.iii

Ez =

2π∫
0

dθ

R∫
0

dr
kσzr

(r2 + z2)3/2
= 2π

R∫
0

dr
kσzr

(r2 + z2)3/2
(20)

= 2πkσz
1√

r2 + z2

∣∣∣∣R
0

= 2πkσ
(

1 −
|z|√
R2 + z2

)
=

σ

2εo

(
1 −

|z|√
R2 + z2

)
(21)

iiWe could also build the disk out of little rings, since the field of a ring is easy to calculate. We chose the more
general approach here just for the sake of completeness. As we note below, the general approach can be thought of
as first building a ring, then building the disk out of rings.

iiiIntegrating over θ first, we build an annulus (ring) out of little segments first, integrating over r then builds the
disk out of rings.
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In the limit R→∞, we recover Ez = σ/2εo, the field of an infinite sheet of charge. In the limit
z�R, when we are far from the disc, it should reduce to a point charge. We can use the binomial
expansion (1+x)n≈1 + nx for x�1:

(
R2 + z2

)−1/2
= z−1

(
1 +

R2

z2

)−1/2

≈ 1
z

(
1 −

R2

2z2

)
(22)

This gives

Ez =
σ

2εo

(
1 −

|z|√
R2 + z2

)
≈ σ

2εo

(
1 − |z|

1
z

(
1 −

R2

2z2

))
=

σ

2εo
R2

2z2
(23)

Noting that Q=πR2σ is the total charge, or σ=Q/πR2,

Ez ≈
σ

2εo
R2

2z2
=

Q

2πεoR2

R2

2z2
=

Q

4πεoz2
(24)

Exactly the expression for a point charge Q at a distance z.

7. Find the electric field inside a sphere which carries a charge density proportional to the distance
from the origin, ρ=cr, for some constant c. Note: the charge density is not uniform, and you must
integrate to get the enclosed charge.

Solution: Just for fun, we’ll find the field everywhere. The charge distribution is spherically
symmetric, which means according to Gauss’ law we can treat it as a point charge. That means
that if the total charge is q, the field outside the sphere is kq/r2 pointing radially outward, where r
is the distance from the center of the sphere. To get q, we have to integrate ρdV. A thin spherical



shell of thickness dr has volume 4πr2 dr (thickness times surface area), so

q =

∫
ρdV =

R∫
0

4πr2ρdr =

R∫
0

4πcr3ρdr =
4πcR4

4
= πcR4 (25)

Thus,

E =
kq

r2
=
πkcR4

r2
r > R (26)

How about inside the sphere at some distance r from the center? Gauss’ law says that the field
is still that of a point charge, but one whose magnitude is determined by how much charge is
enclosed by a sphere of radius r. That is, how much charge is still “beneath” the point of interest.
That enclosed charge is found by just changing the upper limit of integration for q from R to r:
qencl =πcr

4, so

E =
kqencl

r2
=
πkcr4

r2
= πkcr2 r 6 R (27)

One can readily verify that the field is zero at the origin, and that the two formulae agree for r=R.

8. Consider an infinite number of identical charges (each of charge q) placed along the x axis
at distances a, 2a, 3a, 4a, . . . from the origin. What is the electric field at the origin due to this
distribution?

Solution: We have identical charges q placed at distances which are integer multiples of a from
the origin. The total electric field is the sum of each individual electric field from each individual
charge. Since all charges are along the x axis, their fields all point in the −x̂ direction, and we can
simply add the magnitudes.

If we number these charges sequentially, starting from the closest one and continuing until the nth,
the magnitude of the electric fields from the first few charges can be calculated easily, and we begin
to notice a pattern:



E1 = −
keq

a2

E2 = −
keq

(2a)2
= −

keq

4a2

E3 = −
keq

(3a)2
= −

keq

9a2

...

En = −
keq

(na)2
= −

keq

n2a2

The minus sign is to indicate that the field is in the −x̂ direction. Having noticed a pattern, we
can more easily represent the total electric field as an infinite sum, noting that the nth charge from
the origin is at a distance na, and all charges are identical:

Etot =

∞∑
n=1

En =

∞∑
n=1

−keqn

r2n
=

∞∑
n=1

−keq

(na)2
=

−keq

a2

∞∑
n=1

1
n2

This infinite sum is convergent, and has the remarkably simple value of π2/6.iv The total electric
field is then

Etot =
−keq

a2

∞∑
n=1

1
n2

=
−keq

a2

(
π2

6

)
=

−π2keq

6a2

ivThere are some very clever proofs of this, my favorite perhaps being the one using Fourier series and Parseval’s
identity. The first proof was due to Euler: http://en.wikipedia.org/wiki/Basel_problem

http://en.wikipedia.org/wiki/Basel_problem

