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Problem Set 3: solutions

1. A spherical volume of radius a is filled with charge of uniform density ρ. We want to know the
potential energy U of this sphere of charge, that is, the work done in assembling it. Calculate it by
building up the sphere up layer by layer, making use of the fact that the field outside a spherical
distribution of charge is the same as if all the charge were at the center. Express the result in terms
of the total charge Q of the sphere.

Solution: There are in my opinion three reasonably straightforward ways to go about this prob-
lem, each with its own merits. Below I will outline all three, you only needed to have one valid
solution for full credit.

Method 1: use dU=V dq

We know that we can find the potential energy for any charge distribution by calculating the work
required to bring in each bit of charge in the distribution in from an infinite distance away. If we
bring a bit of charge dq in from infinitely far away (where the electric potential is zero) to a point
P(~r), at which the electric potential is V, work is required. The potential V results from all of the
other bits of charge already present; we bring in one dq at a time, and as we build up the charge
distribution, we calculate the new potential, and that new potential determines the work required
to bring in the next dq.

In the present case, we will build our sphere out of a collection of spherical shells of infinitesimal
thickness dr. We’ll start with a shell of radius 0, and work our way up to the last one of radius
R. A given shell of radius r will have a thickness dr, which gives it a surface area of 4πr2 and a
volume of (thickness)(surface area) = 4πr2 dr.

Once we’ve built the sphere up to a radius r, Gauss’ law tells us that the potential at the surface
is just that of a point charge of radius r:

V(r) =
keq(r)

r
(1)

Where q(r) is the charge built up so far, contained in a radius r. Bringing in the next spherical
shell of radius r+dr and charge dq will then require work to be done, in the amount V(r)dq, since



we are bringing a charge dq from a potential of 0 at an infinite distance to a potential V(r) at a
distance r. Thus, the little bit of work required to bring in the next shell is

−dW = dU = V(r)dq =
keq(r)

r
dq (2)

Now, first we’ll want to know what q(r) is. If we have built the sphere to a radius r, then the
charge contained so far is just the charge density times the volume of a sphere of radius r:

q(r) =
4
3
πr3ρ (3)

Next, we need to know what dq is, the charge contained in the next shell of charge we want to
bring in. In this case the charge is just the volume of the shell times the charge density:

dq = 4πr2 dr ρ (4)

Putting that all together:

dU =
ke

4
3πr

3ρ

r
4πr2 dr ρ =

16π2keρ
2

3
r4 dr (5)

All we need to do now is integrate up all the small bits of work required from the starting radius
r=0 to the final radius r=R:

U =

R∫
0

dU =

R∫
0

16π2keρ
2

3
r4 dr =

16π2keρ
2

3

[
r5

5

]R
0

(6)

=⇒ U =
16π2keρ

2

15
R5 (7)

If we remember that the total charge on the sphere is Qtot = 4
3πR

3ρ, we can rewrite a bit more
simply:

U =
3keQ2

tot

5R
(8)

Method 2: use dU= 1
2εoE

2 dVol

We have also learned that the potential energy of a charge distribution can be found by integrating



its electric field (squared) over all space:i

U =
1
2

∫
everywhere

εoE
2 dVol =

1
8πke

∫
everywhere

E2 dVol (9)

If we have a sphere of charge of radius R, we can break all of space up into two regions: the space
outside of the sphere, where the field is ~Eout(r) at a distance r from the center of the sphere, and the
space inside the sphere, where the field is ~Ein(r). Therefore, we can break the integral above over
all space into two separate integrals over each of these regions, representing the energy contained
in the field outside the sphere, and that contained inside the sphere itself:

U = Uoutside +Uinside =
1

8πke

∫
outside

E2
out dVol +

1
8πke

∫
inside

E2
in dVol (10)

Obviously, the region outside the sphere is defined as r > R, and the region inside the sphere is
r 6 R. Just like in the last example, we can perform the volume integral over spherical shells of
radius r and width dr, letting the radius run from 0 → R inside the sphere, and R → ∞ outside.
Our volume elements are thus dVol=4πr2 dr, just as in the previous method.

What about the fields? Outside the sphere, the electric field is just that of a point charge (thanks
to Gauss’ law). Noting again that the total charge on the sphere is Qtot = 4

3πR
3ρ,

~Eout(r) =
keQtot

r2
r̂ =

4πkeR3ρ

3r2
r̂ (r > R) (11)

Inside the sphere at a radius r, the electric field depends only on the amount of charge contained
within a sphere of radius r, q(r) = 4

3πr
3ρ as noted above, which we derived previously from Gauss’

law:

~Ein(r) =
keq(r)

r2
r̂ =

4πkerρ
3

r̂ (r 6 R) (12)

Now all we have to do is perform the integrals . . .
iThe odd notation for volume dVol is to avoid confusion with electric potential without having to introduce more

random Greek symbols. Some people will use dτ to represent volume to this end.



U = Uoutside +Uinside =
1

8πke

∫
outside

E2
out dVol +

1
8πke

∫
inside

E2
in dVol (13)

=
1

8πke

∞∫
R

(
4πkeR3ρ

3r2

)2

4πr2 dr+
1

8πke

R∫
0

(
4πkerρ

3

)2

4πr2 dr (14)

=
8π2keR

6ρ2

9

∞∫
R

1
r2
dr+

8π2keρ
2

9

R∫
0

r4 dr (15)

=
8π2keR

6ρ2

9

[
−

1
r

]∞
R

+
8π2keρ

2

9

[
r5

5

]R
0

=
8π2keρ

2R5

9

(
1
5

+ 1
)

(16)

=
16π2keρ

2

15
R5 =

3
5
kQ2

tot

R
(17)

In the last line, we used ρ=Q/(4
3πR

3). Somehow, it is reassuring that these two different methods
give us the same result . . . or at least it should be!

Method 3: use dU= 1
2ρV dVol

As in the first method, we know that we can find the potential energy for any charge distribution
by calculating the work required to bring in each bit of charge in the distribution in from an infinite
distance away. For a collection of discrete point charges, we found:

U =
1
2

∑
i

∑
j6=i

keqiqj

rij
=

1
2

∑
i

∑
j6=i

qiVj =
1
2

∑
i

∑
j6=i

qjVi (18)

Recall that the factor 1/2 is so that we don’t count all pairs of charges twice. If we have a continuous
charge distribution - like a sphere - our sum becomes an integral:

U =
1
2

∫
everywhere

ρV dVol (19)

We still need the factor 1/2 to avoid double counting. Like the last example, we break this integral
over all space up into two separate ones: one over the volume inside the sphere, and one outside.
Outside the sphere at a distance r > R, the charge density ρ is zero, so that integral is zero. All we
have to do is integrate the potential inside the sphere times the constant charge density over the
volume of the sphere! But wait . . . what is the potential inside the sphere?

The electric field inside such a sphere at a radius r we have already calculated, and it depended only
on the amount of charge contained in a sphere of radius r, q(r). That is because electric field from



the spherical shell of charge more distant than r canceled out. This is not true of the potential,
because the potential is a scalar, not a vector like the electric field, and there is no directionality
that will cause the potential to cancel from the charge more distant than r.

Thus, the potential inside the sphere will actually have two components at a distance r inside the
sphere: a term which looks like the potential of a point charge, due to the charge at a distance less
than r from the center, and one that looks like the potential due to the remaining shell of charge
from r to R. How do we calculate this mess? We can use the definition of the potential and the
known electric field inside the sphere.

~Ein(r) =
keQtotr

R3
r̂ (20)

VB − VA = −

B∫
A

~E · d~l (21)

In this case, we want to find the potential difference between a point at which we already know
what it is - such as on the surface of the sphere - and a point r inside the sphere. Then we can use
the known potential on the surface to find the unknown potential at r. We can most simply follow
a radial path, d~l= r̂dr. Since the electric field is conservative, the path itself doesn’t matter, just
the endpoints - so we always choose a very convenient path.

V(r) − V(R) = −

B∫
A

~E · d~l = −

r∫
R

keQtotr

R3
r̂ · r̂dr (22)

= −

r∫
R

keQtotr

R3
dr = −

keQtot

R3

[
r2

2

]r
R

(23)

=
keQtot

2R3

(
R2 − r2

)
(24)

We know what the potential at the surface V(R) is, since outside the sphere the situation is identical
to that of a point charge. Thus,

V(r) = V(R) +
keQtot

2R3

(
R2 − r2

)
=
keQtot

R
+
keQtot

2R3

(
R2 − r2

)
=
keQtot

2R

(
3 −

r2

R2

)
(25)

Now we are ready! Once again, we integrate over our spherical volume by taking spherical shells
of radius r and width dr, giving a volume element dVol = 4πr2 dr. Noting that ρ is zero outside
the sphere,



U =
1
2

∫
everywhere

ρV dVol = U =
1
2

R∫
0

ρV(r) 4πr2 dr (26)

=
1
2

R∫
0

keQtotρ

2R

(
3 −

r2

R2

)
4πr2 dr =

πkeρQtot

R

R∫
0

3r2 −
r4

R2
dr (27)

=
πkeQtotρ

R

[
r3 −

r5

5R2

]R
0

=
πkeρQtot

R

[
R3 −

R3

5

]
=

4πkeQtotρ

5
R2 =

3
5
kQ2

tot

R
(28)

One problem, three methods, and the same answer every time. Just how it aught to be. Which
method should you use? It is a matter of taste, and the particular problem at hand. I tried to
present the methods in order of what I thought was increasing difficulty, your opinion may differ.

2. At the beginning of the 20th century the idea that the rest mass of the electron might have a
purely electrical origin was very attractive, especially when the equivalence of energy and mass was
revealed by special relativity. Imagine the electron as a ball of charge, of constant volume density
ρ out to some maximum radius ro. Using the result of the previous problem, set the potential
energy of the system equal to mc2 and see what you get for ro. One defect of this model is rather
obvious: nothing is provided to hold the charge together!

Solution: Using the result of the previous problem, and using a=ro,

U =
3
5
kQ2

tot

R
= mc2 (29)

ro =
3kQ2

5mc2
≈ 1.7× 10−15 m (30)

Here we used Q= 4
3πr

3
oρ to make things simpler. In terms of the charge density ρ, we have

ro = 5

√
15mc2

16π2kρ2
(31)

3. A spherical conductor A contains two spherical cavities. The total charge on the conductor
itself is zero. However, there is a point charge qb at the center of one cavity and qc at the center of
the other. A considerable distance r away, outside the conductor, is a point charge qd. What force
acts on each of the four objects, A, qb, qc, and qd? Which answers, if any, are only approximate,
and depend on r being relatively large?

Solution: The force on the point charges qb and qc are zero. The field inside the spherical cavity
is independent of anything outside. Since we require the field to be zero inside a conductor, the field



just outside the cavities but inside the conductor must be zero. For this to be true, charge equal
and opposite to the point charges must be induced on the inside surface of the cavities, −qb on
cavity B, and −qc on cavity C. In order for the spherical conductor itself to be overall electrically
neutral, its surface must then have a charge qb+qc spread out uniformly on it to cancel out the
induced charge on the cavity surfaces.

If there were no charge qd, the field outside would look like that of a point charge of magnitude
qb+qc, the total charge enclosed by the conductor: E= |qb+qc|/r

2. The presence of qd will slightly
alter the distribution of charge on the conductor’s surface (if qd is positive, it would push some of
the previously uniform positive surface charge to the far side), but not the total amount of charge.
Since the distribution would no longer be spherically symmetric, it would no longer be exactly like
a point charge. If qd is far enough from the conductor, the effect is small, and the force on qd
would be approximately

~Fd ≈
keqd (qb + qc)

r2
r̂ (32)

Recall that by Newton’s third law that the force on the cavity must be equal and opposite, ~FA=

−~Fd. Only these two forces are approximate and depend on r being relatively large; the net force
on qb and qc is zero regardless.

4. We want to design a spherical vacuum capacitor with a given radius a for the outer sphere,
which will be able to store the greatest amount of electrical energy subject to the constraint that
the electric field strength on the surface of the inner sphere may not exceed Eo. What radius b
should be chosen for the inner spherical conductor, and how much energy can be stored?

Solution: First we need to know the capacitance of the two sphere system. Let r be the distance
measured from their common centers. For that, we need only find the potential between the two
spheres, b<r<a. Inside the outer sphere of radius a, we know that the field due to outer sphere
is zero by Gauss’ law. That means that the potential due to the outer sphere is constant for r6a,
since ~E=−~∇V. Thus, the potential difference between the two spheres depends only on the field
due to the inner sphere of radius b. This we can find easily enough by integrating ~E · d~l over a
radial path from b to a, since the field of the inner sphere will be that of a point charge for r>b.
Let the outer sphere have a charge −Q, meaning the inner sphere has a charge Q.

∆V = −

a∫
b

~E · d~r = −

a∫
b

keQ

r2
dr = keQ

(
1
b

−
1
a

)
= keQ

a− b

ab
(33)



The capacitance is charge divided by potential difference:

C =
Q

∆V
=

1
ke

ab

a− b
= 4πεo

ab

a− b
(34)

The stored energy can be found in terms of the capacitance and voltage:

U =
1
2
C (∆V)2 =

1
2ke

ab

a− b
k2
eQ

2

(
a− b

ab

)2

=
1
2
keQ

2

(
a− b

ab

)
(35)

Now we know that at the inner surface r= b the field can be at most Eo, and we know that the
field is just that of a point charge of magnitude Q. This lets us recast the energy in terms of the
maximum allowed field, since one is proportional to the other:

Eo =
keQ

b2
=⇒ Q =

b2Eo

ke
(36)

U = ke
b4E2

o

k2
e

(
a− b

ab

)
=
E2
o

2ke

(
b3 −

b4

a

)
(37)

Maximizing the energy means ∂U/∂b=0 (and ∂2U/∂b2<0), which gives us a relationship between
b and a:

∂U

∂b
=
E2
o

2ke

(
3b2 − 4

b3

a

)
= 0 =⇒ b =

3
4
a (38)

Of course, this could be a minimum; we must apply the second derivative test (or at least graph
the function):

∂2U

∂b2

∣∣∣∣
b= 3

4a

= 6b− 12
b2

a

∣∣∣∣
b= 3

4a

=

(
9
2

−
27
4

)
a < 0 (39)

Indeed, b= 3
4a is a maximum, giving the maximum stored energy if the field strength on the inner

conductor is the constraint. The actual energy stored is then found by plugging this value back
into our expression for U:

Umax =
27

512ke
E2
oa

3 (40)

5. We have two point charges connected by a rigid rod, forming a dipole. It is placed in an external
electric field ~E(~r).



(a) Suppose that the electric field is uniform: ~E=~Eo where ~Eo is a constant vector. What will be
the total force on the dipole?
(b) Now suppose the field is not uniform, but that it only changes by a small amount over the
distance d. Show that the z-component of the total force on the dipole is approximately

Fz = pz
∂Ez

∂z
(41)

where pz is the z-component of the dipole moment ~p.ii

(c) Why is a charged rubber rod able to attract bits of paper without touching them?

Solution: Reference the figure below. We will imagine that there is a rigid rod holding the two
charges together.

d

q

-q

z

yO

P(x,y,z)

r

θ

(a) The total force on the rigid dipole is the sum of the forces on each charge:

~Fnet = q~Eo − q~Eo = 0 (42)

(b) For a non-uniform field, the force is in general not zero, but depends on the difference between
the field at the position of positive charge and the negative charge. If we worry only about a single
component of the total force, say the z component, the force depends only on that component of
the field, and we have

Fz = q~Ez

(
d

2
ẑ

)
− q~Ez

(
−
d

2
ẑ

)
= q

[
~Ez

(
d

2
ẑ

)
− ~Ez

(
−
d

2
ẑ

)]
(43)

iiFor an arbitrary dipole orientation, this generalizes to ~F=
(
~p · ~∇

)
~E.



In the limit of small d and slowly-varying ~E(r), we can approximate the difference term as

~Ez

(
d

2
ẑ

)
− ~E

(
−
d

2
ẑ

)
≈ d∂Ez

∂z
(44)

Noting that qd is the dipole moment p,

Fz ≈ qd
∂Ez

∂z
(45)

(c) When a charged rubber rod is brought near bits of paper, dipole moments are induced in
the bits of paper. The non-uniform electric field emanating from the end of the rubber rod then
interacts with the induced dipole moments to attract the bits of paper.

6. A wire having uniform linear charge density λ is bent into the shape shown below. Find the
electric potential at O.

2R 2RR

O

Solution: The two straight bits of wire will give the same contribution to the potential at O. Take
the straight segment on the right side and break it up into infinitesimal segments of length dx, each
of which will have charge dq=λdx. The potential from each dq is that of a point charge, we can
find the potential at O by integrating over the line segment from R to 3R all such contributions:

Vline =

∫
line

kedq

r
= ke

3R∫
R

λdx

x
= k ln 3 (46)

For the semicircle, each infinitesimal bit of arclength ds= Rdθ has charge λds, and also gives a
contribution to the potential kdq/R. Integrating over the semicircle means running the angle θ
from −π2 to π

2 :

Vsemicircle =

∫
semicircle

kedq

r
= ke

pi/2∫
−π/2

λRdθ

R
= keπλ (47)

The total potential at O is due to two line segments and one semicircle:

VO = 2Vline + Vsemicircle = 2kλ ln 3 + kλπ = kλ (2 ln 3 + π) (48)



7. The two figures below show small sections of two different possible surfaces of a NaCl surface. In
the left arrangement, the NaCl(100) surface, charges of +e and −e are arranged on a square lattice
as shown. In the right arrangement, the NaCl(110) surface, the same charges are arranged in a
rectangular lattice. What is the potential energy of each arrangement (symbolic answer)? Which
is more stable?

+ -

- +

+ +

- -

a

a a
√

2

a

Solution: We need only add up the potential energies of all possible pairs of charges. In each case
we have four charges, so there must be

(
4
2

)
=6 combinations. Let the upper left charge be q1, and

number the charges in a clockwise fashion. The combinations are thus

q1q2,q1q3,q1q4 (49)

q2q3q2q4 (50)

q3q4 (51)

For either arrangement,t he energy is then

U =
keq1q2

r12
+
keq1q3

r13
+
keq1q4

r14
+
keq2q3

r23
+
keq2q4

r24
+
keq3q4

r34
(52)

For the first arrangement, NaCl(100), we need only plug in the distances and charges:

U100 =
−kee

2

a
+
kee

2

a
√

2
+

−kee
2

a
+

−kee
2

a
+
kee

2

a
√

2
+

−kee
2

a
=
ke2

a

(
−4 +

√
2
)
≈ −2.58

ke2

a
(53)

For the second arrangement, NaCl(110), we have:

U110 =
kee

2

a
√

2
+

−kee
2

a
√

3
+

−kee
2

a
+

−kee
2

a
+

−kee
2

a
√

3
+
kee

2

a
√

2
=
ke2

a

(
−2 +

√
2 −

2√
3

)
≈ −1.74

ke2

a
(54)

Since U100<U110, the (100) surface is more stable, in agreement with experiments.

8. A charge Q is located h meters above a conducting plane. How much work is required to bring
this charge out to an infinite distance above the plane? Hint: Consider the method of images.



Solution: There are two ways to approach this one. First, the presence of the conducting plane a
distance h from the positive charge means that this problem is equivalent to a dipole of spacing 2h
(see figure below).iii Thus, we need to find the work required to move a charge q from a distance
2h from a second charge −q out to infinity. Let the origin be halfway between the real charge q
and its image charge −q. The work required to move the positive charge away is:

W = −

∫
~F · d~l = −

∞∫
h

q~E · r̂dr = −

∞∫
h

kq2

(2r)2
dr =

kq2

4

[
1
z

]∞
h

=
−kq2

4h
(55)
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Figure 1: The field of a charge near a conducting plane, found by the method of images.

A much sneakier way is to realize that the energy in the electric field must just be half of that due to
a real dipole. We learned that the energy of a charge configuration can be found by integrating the
electric field over all space, U ∼

∫
E2 dV. The electric field due to our point charge above the con-

ducting plane is identical to that of a dipole, but only for the region of space above the plane. Below
the plane, half of all volume in space, the field is zero. We can immediately conclude that the point
charge and infinite plane have half as much energy, since there is no field below the conducting plane.
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1. Purcell 3.5 Work and image charges [15 points]

We can calculate the force experienced by the charge Q by considering the electric field generated by its
image charge. However, we must remember that the image charge also moves when the original charge is
moved.

W = −Q

∫
!E · d!s =

∫ ∞

h
dh′

Q2

(2h′)2
=

Q2

4h

The answer Q2

4h must be true because it takes no work to move the image charge, it is simply an image of
the original charge.
We can also look at this from the point of view of field energy. We learned in chapter 1 that U = 1

8π

∫
dV E2.

The electric fields in the point charge and infinite plane system are identical to the system of two point
charges in the whole lane. We can immediately conclude that the system of the point charge and the infinite
plane has half as much energy because there are no fields in the lower half plane.

+

-

-    -    -   -   -  -  - - -------- - -  -  -   -   -    -    -

+

U 2U

2. Purcell 3.17 Designing a spherical capacitor [15 points]

A note on calculating capacitances. It may become confusing to calculate capacitance because there seems to
be an ambiguous sign (i.e. do we take φ1−φ2 or φ2−φ1?) that might result in a negative capacitance. One
way to calculate capacitance is to choose a convention where Q is positive and to calculate the potential from
it. Then, your choice of ∆φ must be positive. At the level of 8.022, another way is just to take the absolute
value of whatever capacitance answer you get, since normal materials never exhibit negative capacitance.

1

Figure 2: The field energy of our single charge with a conducting plate is half that of a dipole.

iiiSee http://faculty.mint.ua.edu/~pleclair/ph106/Exercises/EX3_SOLN.pdf, problem 4.

http://faculty.mint.ua.edu/~pleclair/ph106/Exercises/EX3_SOLN.pdf


The energy of a dipole we found already when we considered point charges. If the dipole spacing
is 2h,

Udip =
kq2

2h
=⇒ U =

1
2
Udip =

kq2

4h
(56)


