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1. A battery has an ideal voltage ∆V and an internal resistance r. A variable load resistance R is
connected to the battery. Determine the value of R such that the power delivered to the resistor is
maximum.

Solution: The circuit we are considering is just a series combination of the (ideal) internal voltage
source ∆V, the internal resistance Ri, and the external resistance R. Since all the elements are in
series, the current is the same in each, which we will call I. Applying conservation of energy,

∆V − IR− IRi = 0 =⇒ I =
∆V

R+ Ri

The power delivered to the external resistor PR is just I2R:

PR = I2R =

(
∆V

R+ Ri

)
R = (∆V)2

R

(R+ Ri)
2

We can maximize the power delivered to the resistor R by differentiating the power with respect to
R and setting the result equal to zero:

dPR

dR
=
d

dR

[
(∆V)2

R

(R+ Ri)
2

]
= (∆V)2

[
1

(R+ Ri)
2 +

−2R
(R+ Ri)

3

]
= 0

=⇒ 1
(R+ Ri)

2 =
2R

(R+ Ri)
3

1 =
2R

R+ Ri

R+ Ri = 2R

=⇒ Ri = R

The power is indeed extremal when the external resistor matches the internal resistance of the
battery. We should apply the second derivative test to see whether this is a maximum or a minimum.
Recall briefly that after finding the extreme point of a function f(x) via df/dx|x=a= 0, one should
calculate d2f/dx2|x=a: if d2f/dx2|x=a< 0, you have a maximum, if d2f/dx2|x=a> 0 you have a
minimum, and if d2f/dx2|x=a= 0, the test basically wasted your time. Anyway, let’s find the
second derivative, and simplify it as much as possible.
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We are concerned with the value of the second derivative at the point R=Ri, the extreme point:

d2PR

dR2

∣∣∣∣
R=Ri

=
(∆V)2

(Ri + Ri)
3

[
6Ri

Ri + Ri
− 4
]

=
(∆V)2

8R3
i

[3 − 4] = −
(∆V)2

8R3
i

< 0

The second derivative is always negative, so we have found a maximum. Thus, the power delivered
to an external resistor is maximum when R=Ri.

A

B

2. In the circuit above, all five resistors have the same value, 100Ω, and each battery has a rated
voltage of 1.5 V and no internal resistance. Find the open-circuit voltage and the short-circuit
current for the terminals A, B. Then find the Thèvenin equivalent circuit (i.e., the ideal battery
and resistor that could replace this circuit between terminals A, B.)

Solution: Let the batteries have voltage V and the resistors have resistance R, and presume a
current I exists in both branches (when A and B are open, the current must be the same everywhere
since there is just one loop). We can get the current by walking all the way around the loop, which
must give us a net zero change in potential:

0 = 2V − 3IR− 2IR+ V (1)

3V = 5IR (2)

I =
3V
5R

(3)



The open-circuit voltage is now readily found by “walking” from A to B and summing the changes
in potential. We can do this via either the upper or lower branch, and the two results must be
equal. We’ll do both just to be sure: first walk the lower branch, then the upper, taking care to
keep the signs straight.

∆VAB = −3IR+ 2V = 2IR− V (4)

= −
9
5
V + 2V =

6
5
V − V =

1
5
V (5)

Once we short A and B, we will have different currents in the two branches, and the current from A

to B will be their difference. To make that point more clear, connect the two sides of the loop that
go to points A and B directly across the center of the loop. Then there must be a counterclockwise
current in one branch of the loop and a clockwise current in the other, and through the center
short-cut from A to B, the two currents must meet head on. To get the currents, one can walk
around each of the two smaller loops we’ve now created by shorting across the center. In the loop
with three resistors and two batteries, we have

0 = 3I1R− 2V =⇒ I1 =
2V
3R

(6)

in the other loop, we have

0 = 2I2R− V =⇒ I2 =
V

2R
(7)

The short-circuit current in the branch shorting A to B is the difference between these two currents,

Is = I1 − I2 =
V

6R
(8)

The Thévenin equivalent resistance is then the open-circuit voltage divided by the short-circuit
current:

Rth =
∆VAB

Is
=

6
5
R (9)

Thus, the Thévenin equivalent of this circuit is a single battery of value V/5 in series with a resistor
of value 6R/5. The Norton equivalent circuit would be a current source of value V/6R in parallel
with a resistor of value 6R/5. Numerically,

Vth = ∆VAB = 0.3V (10)

Rth = 120Ω (11)

IN = Is = 2.5 mA (12)



3. Two resistors are connected in parallel, with values R1 and R2. A total current Io divides
somehow between them. Show that the condition I1 + I2 = Io, together with the requirement
of minimum power dissipation, leads to the same current values that we would calculate with
normal circuit formulas. This illustrates a general variational principle that holds for direct current
networks: the distribution of currents within the networks, for a given input current Io, is always
that which gives the least total power dissipation.

Solution: First, let’s figure out the current in each resistance using the normal circuit formulas.
Since the two resistors are in parallel, they will have the same potential difference across them,
but in general different currents (unless R1 = R2, in which case the currents are the same). Let
I1 and I2 be the currents in resistors R1 and R2, respectively, with the total current then given
by conservation of charge, Io = I1 + I2. Given the current through each resistor, we can readily
calculate the voltage drop on each, which again must be the same for both resistors:

∆V1 = I1R1

∆V2 = I2R2

∆V1 = ∆V2 =⇒ I1R1 = I2R2

We can find the current in each resistor from the known total current Io by noting that Io=I1 + I2,
and thus I2 =Io − I1

I1R1 = I2R2

I1R1 = (Io − I1)R2

I1R1 + I1R2 = IoR2

=⇒ I1 =
R2

R1 + R2
Io =

[
1

1 + R1
R2

]
Io

Thus, the fraction of the total current in first resistor depends on the ratio of the two resistors.
The larger resistor 2 is, the more current that will flow through the first resistor – not shocking!
Given the above expression for I1, we can easily find I2 from I2 =Io − I1, which yields

I2 =
R1

R1 + R2
Io =

[
1

1 + R2
R1

]
Io

Our derivation of the currents in each resistor has so far only relied on conservation of energy
(components in parallel have the same voltage) and conservation of charge (Io= I1 + I2), we have
not invoked any special “laws” about combining parallel resistors. In fact, that is what we have



just derived!

Now for the requirement of minimum power dissipation. We want to find the distribution of cur-
rents that results in minimum power dissipation in the most general way, specifically not using the
results of the previous portion of this problem. We will only assume that resistors R1 and R2 carry
currents I1 and I2, respectively, and that these two currents add up to the total current, Io=I1 +I2.
In other words, we only assume conservation of charge to start with.

The total power dissipated is just the sum of the individual power dissipations in the two resistors:

Ptot = P1 + P2 = I21R1 + I22R2 = I21R1 + (Io − I1)
2
R2 = I21 (R1 + R2) + I2oR2 − 2IR2I1

For the last part, we invoked our conservation of charge condition (Io = I1 + I2). What to do
next? We have now the total power Ptot in both resistors as a function of the current in R1. If
we minimize the total power with respect to I1, we will have found the value of I1 which leads
to the minimum power dissipation. Since I2 is then fixed by the total current I once we know
I1, I2 = Io − I1, this is sufficient to establish the values of both I1 and I2 that lead to minimum
power dissipation. Of course, to find the minimum of Ptot for any value of I1, we need to take a
derivativei . . .

dPtot

dI1
= 2I1 (R1 + R2) − 2IoR2 = 0

=⇒ I1 =
R2

R1 + R2
Io

Lo and behold, the minimum power dissipation occurs when the currents are distributed exactly as
we expect for parallel resistors. At this point, you can easily find I2 as well, given I2 =Io− I1. The
general rule is that current in a dc circuit distributes itself such that the total power dissipation is
minimum, which we will not prove here.

Of course . . . by finding dPtot
dI1

and setting it to zero, we have certainly found an extreme value for
Ptot. We did not prove whether it is a maximum or a minimum. Once again, the second derivative
test is necessary.

d2Ptot

dI21
= 2 (R1 + R2) > 0

Since resistances are always positive, we have in fact found a minimum of Ptot. Crisis averted.

iKeep in mind that the total current Io is fixed, so dIo/dI1 =0. And, yes we should technically be using partial
derivatives here (differentiating with respect to I1 while holding everything else constant), but since only I1 varies
that would be a bit pedantic. Plus, the ∂ symbols seem to scare people.



Don’t let that lull you into complacency, however: you always need to apply the second derivative
test to see what you’ve really found. At the very least, you should invoke the symmetry of the
function to justify having found a minimum or maximum, and not just take derivatives and set
them to zero all willy-nilly.

4. A resistor R is to be connected across the terminals A, B of the circuit below. (a) For what
value of R will the power dissipated in the resistor be the greatest? To answer this, construct the
Thévenin equivalent circuit and then invoke the result of the first problem. (b) How much power
will be dissipated in R?

10
Ω

-
+ R12

0V

A

B

15Ω

10Ω

Solution: For the moment, imagine that R has been removed. We can find the Thévenin equiv-
alent of the rest of the circuit, just a single battery and resistor. Plugging the resistor R into the
Thévenin equivalent would just make two resistors in series with a battery, simple. Further, based
on the result of the first problem, we know the power will be maximum when R is equal to the
Thévenin equivalent resistance between points A and B. Thus, once we’ve found the Thévenin
equivalent, we are basically done.

When R is removed and A and B are left unconnected, the entire circuit is just a 120 V battery in
series with two 10Ω resistors. The 15Ω resistor does nothing, since one end is unconnected. This
circuit is just a voltage divider, the 120 V of the battery splits up evenly between the two 10Ω
resistors, so the voltage between A and B is simply Vth=60 V.

When R is (still) removed and A and B are shorted, we have the vertical 10Ω resistor in parallel
with 15Ω, and that combination in series with 10Ω. The equivalent resistance is then

Req = 10Ω+
(10Ω) (15Ω)

10Ω+ 15Ω
= 16Ω (13)

This means the total current is the battery voltage divided by this resistance



I =
120V
16Ω

= 7.5 A (14)

The current through the (shorted) A to B path is the same as the current in the 15Ω resistor. To
find that, we can first note that the voltage across the 15Ω resistor would be 120 V minus the drop
across the horizontal 10Ω resistor:

∆V15 = 120 − (10Ω) (7.5 A) = 45 V (15)

The current through the 15Ω resistor, the short circuit current, is then just

Is =
45 V
15Ω

= 3 A (16)

Finally, this gives us the Thévenin equivalent resistance:

Rth =
Vth

Is
= 20Ω (17)

The power delivered will thus be maximal when R= 20Ω. To find the power dissipated in R, we
need the current in the circuit with R connected. In that case, our equivalent circuit is a 60 V
battery in series with R = 20Ω and the 20Ω Thévenin equivalent, or 60 V in series with 40Ω.
The current would then be I= 60 V/40Ω= 1.5 A. We could have noted that directly be realizing
that connecting R doubles the resistance compared to the short-circuit case, which means half the
short-circuit current results. The power in R is then

PR = I2R = (1.5 A)2 (20Ω) = 45 W (18)

The total power dissipation would be twice as much, since the 20Ω Thévenin equivalent has the
same current and thus dissipates the same power.

5. A laminated conductor was made by depositing, alternately, layers of silver 10 nm thick and
layers of tin 20 nm thick. The composite material, considered on a larger scale, may be considered
a homogeneous but anisotropic material with electrical conductivity σ⊥ for currents perpendicular
to the planes of the layers, and a different conductivity σ|| for currents parallel to that plane. Given
that the conductivity of silver is 7.2 times that of tin, find the ratio σ⊥/σ||.

Solution: First, let us sketch out the situation given:
Now, let’s solve the problem in general way, and only use the given numbers once we’ve found a
symbolic solution.

We are not told how many layers of each type we have, and it will not matter in the end. For now,
however, assume we have n1 layers of tin of conductivity σ1 and n2 layers of silver of conductivity
σ2. Instead of conductivity, we can equivalently use resistivity ρ when it is more convenient, with



t1
t2

a

b

ρ= 1/σ. We will also say the tin layers have thickness t1, and the silver layers thickness t2. The
total thickness of our entire multi-layer stack is then ttot =n1t1 + n2t2.

First, consider the perpendicular conductivity, the case where we pass current upward through the
stack, perpendicular to the planes of the layers. When a current is flowing, electrons pass through
each layer in sequence, and we can consider the stack of layers to be resistors in series. If the layers
have an area of A=ab (see the Figure above) and a thickness t1 or t2, we can readily calculate the
resistance presented by a single tin or silver layer with current perpendicular to the layers:

R1,⊥ =
ρ1t1

A
=

t1

σ1A

R2,⊥ =
ρ2t2

A
=

t2

σ2A

For reasons that should become apparent below, it will be convenient in this case to work with
the resistivity rather than the conductivity, and invert the result later. The total resistance of the
stack is then just a series combination of n1 resistors of value R1 and n2 resistors of value R2:

Rtot,⊥ = n1R1,⊥ + n2R2,⊥ =
1
A

(ρ1t1n1 + ρ2t2n2)

If we measure the whole stack and find this resistance, we can define an effective resistivity or
conductivity for the whole stack in terms of the total resistance and total thickness of the multilayer.
If the resistivity of the whole stack for perpendicular currents is ρ⊥ = 1/σ⊥, then:

Rtot,⊥ =
ρ⊥ttot

A
=⇒ ρ⊥ =

ARtot,⊥
ttot

Now we just need to plug in what we know and simplify . . .



ρ⊥ =
ARtot,⊥
ttot

=
A

ttot

[
1
A

(ρ1t1n1 + ρ2t2n2)

]
ρ⊥ =

ρ1t1n1 + ρ2t2n2

ttot
=
ρ1t1n1 + ρ2t2n2

n1t1 + n2t2

We can simplify this somewhat if we realize that we have the same number of silver and tin layers
- we are told that the layers are deposited alternatingly. If we let n1 =n2≡nbi, meaning we count
the number of bilayers instead, then ttot =nbi (t1 + t2), and

ρ⊥ =
nbiρ1t1 + nbiρ2t2

nbit1 + nbit2
=
ρ1t1 + ρ2t2

t1 + t2

This is a nice, simple result: for current perpendicular to the planes, the effective resistivity is just
a thickness-weighted average of the resistivities of the individual layers. Given the resistivity in the
perpendicular case, we can now find the conductivity σ⊥

σ⊥ =
1
ρ⊥

=
t1 + t2

ρ1t1 + ρ2t2
=
t1 + t2
t1
σ1

+ t2
σ2

=
σ1σ2 (t1 + t2)

σ2t1 + σ1t2

As a consistency check, we can take a couple of limiting cases. First, let σ1 =σ2≡σ. This corre-
sponds to a homogeneous lump of a single material, and we find σ⊥=σ, as expected. Next, we can
check for σ1 =0. In this case, one layer is not conducting at all, and since the layers are in series,
this means no current flows through the stack at all, and σ⊥ = 0 as expected. Finally, we notice
that the number of bilayers is irrelevant. Since the layers do not affect each other in our simple
model of conduction, there is no reason to expect otherwise. So far so good. What other limiting
cases can you check?

Next, let us consider current flowing parallel to the plane of the layers, from (for example) left to
right in the figure above. Now the stack looks like many parallel resistors. A single tin layer of
thickness t1 and in-plane dimensions a and b now presents a resistance

R1,|| =
ρ1a

t1b
=

a

t1bσ1

Similarly, each silver layer presents a resistance

R2,|| =
ρ2a

t2b
=

a

t2bσ2

One bilayer of silver and tin means a parallel combination of these two resistances:

1
Rbi,||

=
1
R1,||

+
1
R2,||

=
b

a
(t1σ1 + t2σ2)

If we have nbi bilayers, then the total equivalent resistance is easily found:



1
Rtot,||

= nbi
1

Rbi,||
= nbi

b

a
(t1σ1 + t2σ2)

Given the total resistance, we can now calculate the conductivity directly (in this case, first finding
the resistivity does not save us any algebra), noting that the length of the whole stack along the
direction of the current is just a, and the cross-sectional area is bttot =bnbi (t1 + t2):

σ|| =
1
ρ||

=
a

nbi (t1 + t2)bRtot,||
=

a

nbi (t1 + t2)b

(
b

a

)
nbi (t1σ1 + t2σ2) =

t1σ1 + t2σ2

t1 + t2

Again, a sensible result: the effective conductivity for current parallel to the planes is just a
thickness-weighted average of the conductivities of the individual layers. Again, you can con-
vince yourself with a couple of limiting cases that this result makes some sense.

Now that we have both parallel and perpendicular conductivities, we can easily find the anisotropy
σ⊥/σ||.

σ⊥/σ|| =
ρ||

ρ⊥
=
σ1σ2 (t1 + t2)

σ2t1 + σ1t2

t1 + t2

σ1t1 + σ2t2
=

σ1σ2 (t1 + t2)
2

(t1σ1 + t2σ2) (t1σ2 + t2σ1)

Finally, we are given that the conductivity of silver is 7.2 times that of tin, and the tin layers’
thickness is twice that of the silver. Thus, t1 =2t2 and σ2 =7.2σ1. The actual values and units do
not matter, as this is a dimensionless ratio (you should verify this fact . . . ), and you should find
σ⊥/σ||≈0.457.

And, once again, you can check that for σ1 =σ2, we have σ⊥/σ|| = 1, as it must if both materials
are the same.

6. In the circuit below, determine the current in each resistor and the voltage across the 200Ω
resistor.

+
-

+
-40 V 360 V

80 ! 20 !

+
-

70 !

200 !

80 V

Solution: First we must label the currents in each branch and pick their directions. We will pick
the directions arbitrarily - in fact, we will intentionally choose directions that are extremely unlikely
to be correct just to drive home the point that it doesn’t matter at all. If we chose the current
direction in a particular branch incorrectly, the current comes out negative, so it really doesn’t



matter. What does matter is that we solve the problem in a general way, purely symbolically. Get
rid of the numbers and reformulate the problem in an abstract way:

V1 V2

R1

I2 I3

I1 I4

V3

R2 R3

R4

Now we just apply conservation of charge (current) and energy (voltage). We have 4 loops which
will give us three conservation of energy equations, and 4 unknown currents. That means we need
a single node equation based on conservation of current, which we can apply at the point indicated
by the dot in the figure above:

I1 + I2 + I4 = I2 (19)

Now we’ll walk the three smaller loops clockwise, from left to right.

V1 − I1R1 − I2R2 − V2 = 0 (20)

V2 − I2R2 − I3R3 − V2 = 0 (21)

V3 − I3R3 + I4R4 = 0 (22)

At this point, we have four equations and four unknowns. We could just plug the numbers into any
number of linear algebra programs or online equations solvers, but this lacks a certain elegance. A
symbolic solution is required if at all possible, just on general principles. To facilitate this, let’s
write our four equations in matrix form.


1 −1 1 1
R1 R2 0 0
0 R2 R3 0
0 0 R3 −R4



I1

I2

I3

I4

 =


0

V1 − V2

V3 − V2

V3

 (23)

One alternative is to use Gaussian elimination. It is reasonably efficient, and it is simple (Cramer’s



rule, for instance, will be messier). The entire method basically consists of adding the equations
together in various fashions until you’re left with one that has just a single variable in it. Let’s
start by adding R4 times the first equation to the last equation:

1 −1 1 1
R1 R2 0 0
0 R2 R3 0
R4 −R4 R3 + R4 0



I1

I2

I3

I4

 =


0

V1 − V2

V3 − V2

V3

 (24)

Now add (−R4/R1) times the second equation to the last equation:
1 −1 1 1
R1 R2 0 0
0 R2 R3 0
0 −R4 − R4R2/R1 R3 + R4 0



I1

I2

I3

I4

 =


0

V1 − V2

V3 − V2

V3 + (V2 − V1)R4/R1

 (25)

Now add −(R4 + R3)/R3 times the third equation to the last equation:
1 −1 1 1
R1 R2 0 0
0 R2 R3 0
0 −R4 − R4R2/R1 − R2(R3 + R4)/R3 0 0



I1

I2

I3

I4

 =


0

V1 − V2

V3 − V2

V3 + (V2 − V1)R4/R1 + (V2 − V3)(R3 + R4)/R3


(26)

The last line now gives[
−R4 − R4R2/R1 − R2(R3 + R4)/R3

]
I2 = (V3 + (V2 − V1)R4/R1 + (V2 − V3)(R3 + R4)/R3 (27)

I2 =
(V1 − V2)R4/R1 + (V3 − V2)(R3 + R4)/R3 − V3

R4 + R4R2/R1 + R2(R3 + R4)/R3
≈ −5.99 A

(28)

Substitution back into the original equations then readily gives the other currents:
I1

I2

I3

I4

 = −


2.50
5.99
2.29
1.20

 A (29)

Thus, the directions are exactly the opposite of our original choice, but this isn’t a problem at
all. The current through the 200Ω resistor is thus 1.20 A downward, and the voltage across it is



I4R4≈240 V.

7. Find the input resistance (between terminals A and B) of the following infinite series of resistors.

R1 R1 R1 R1

R2 R2 R2 R2

A

B

Show that, if voltage Vo is applied at the input to such a chain, the voltage at successive nodes
decreases in a geometric series. What ratio is required for the resistors to make the ladder an
attenuator that halves the voltage at every step? Can you suggest a way to terminate the ladder
after a few sections without introducing any error in its attenuation? Hint: If we put another “link”
on the left of this infinite chain, we get exactly the same configuration.

Solution: The infinite ladder of resistors must have a finite overall resistance, since adding more
“rungs” in the chain will only reduce the overall resistance. To find out what the equivalent is, we
can exploit the fact that the network is infinite, so adding or subtracting a few nodes makes no
difference.

Let’s say we we wished to terminate the chain after some N resistor pairs. We could add a last
resistor Req on the very end which has a resistance equivalent to all those that would come further
in the chain. But, how many are left? Take N out of infinity, and you still have infinity left! It
doesn’t matter if you terminate the chain after N pairs or just 1, the resistance equivalent to the
rest of the chain is always Req. Moreover, since the rest of the chain we’re leaving off is infinite just
like the original one, the resistance Req must also be the equivalent resistance of the entire ladder.
In short, taking a finite number of resistors off of an infinite chain makes no difference. If that is
the case, why not just terminate it after one pair and be done with it? That means we can replace
the whole infinite ladder with this:

R1

R2 Req

A

B



where Req is the equivalent resistance of the remainder of the ladder. Of course, the equivalent
resistance of this circuit must also be Req, it is the same infinite ladder. Finding the equivalent of
what we’ve drawn above is easy enough,

Req = R1 + Req||R2 = R1 +
R1Req

R1 + Req
(30)

Solving for Req,

Req =
R1 ±

√
R2

1 + 4R1R2

2
=

1
2
R1

[
1 +

√
1 + 4

(
R2

R1

)]
(31)

Only the positive resistance has physical meaning. This solves our issue of termination - af-
ter as many nodes as we need, just end the ladder by shorting the far end with a resistor of
value Req and it is the same as if the ladder continued on. Also note that if R1 = R2, we have
Req=R1

(
1 +
√

5
)
/2 =φR1 where φ=

(
1 +
√

5
)
/2 is the golden ratio. A useless fact, but sort of

cute.

How about the voltage at successive nodes? Say we apply Vo at the input to the ladder. The net
current is then I=Vo/Req. After the first resistor R1, we have a voltage drop of IR1, so the first
node after the input must have a voltage V1 of

V1 = Vo − IR1 = Vo − Vo
R1

Req
= Vo

(
1 −

R1

Req

)
(32)

This argument will work for any two adjacent nodes. The current at node n is always In=Vn/Req,
which means node (n+ 1) has a voltage which is lower than the nth by InR1:

Vn+1 = Vn − InR1 = Vn − Vn
Req

R1
= Vn

(
1 −

R1

Req

)
(33)

The ratio of the voltage at successive nodes is thus the definition of a geometric series:

Vn+1

Vn
= 1 −

R1

Req
= 1 −

R1

1
2
R1

[
1 +

√
1 + 4

(
R2

R1

)] (34)

For an attenuation of 1
2 at every node, it is easy to see that we need Req=2R1. Using our formula

for Req, this means R1 = 1
2R2

8. For the circuit shown below, with Vin = 30 V and R1 =R2 = 10 kΩ, find (a) the output voltage
(between the R1 and R2) with no load attached; (b) the output voltage with a 10 kΩ load resistance;
(c) the Thèvenin equivalent circuit (rightmost circuit in the figure below); (d) the power in each
resistor with and without a load present.



R1

R2 Rload

+Vin +VTH

RTH

Rload

Solution: With no load attached, the output voltage is just the voltage across R2. Since we have
only two series resistors, the current in both is the same, and it must be Vin/(R1 +R2). The output
voltage is then

Vo = IR2 = Vin
R2

R1 + R2
= 15 V no load (35)

With a load RL attached, we now have R2 and RL in parallel. This simply changes R2 in the previous
case to the equivalent of R2||RL, meaning we can just make that substitution in our previous formula.

Vo =
VinR2

R1 + R2||RL
=

VinRLR2

(RL + R2)
(
RLR2
RL+R2

) =
VinR2RL

R1R2 + R1 (RL + R2)
= 10 V with load (36)

This is the basic problem with a simple voltage divider - as soon as you plug in a load to it, the
output changes. One can make the divider “stiff” by ensuring that RL is large compared to R2 (say,
10 times larger for ∼10% accuracy).

Without a load present, the output voltage is the open-circuit voltage, and thus the Thèvenin
equivalent Vth. A short circuit between output and ground would take R2 out of the circuit (Vin
goes straight through R1 to ground), so the current would be Is=Vin/R1. The Thèvenin equivalent
resistance is then Rth=Vth/Is:

Vth =
VinR2

R1 + R2
= 15 V no load (37)

Rth =
Vth

Is
=

R1R2

R1 + R2
= 5 kΩ no load (38)

The Thèvenin resistance is just that of R1 parallel to R2, which is exactly what the output “sees”
looking back to the source. With a load present, the open-circuit voltage is now the modified output
voltage we found above. The short-circuit current is exactly the same as in the no load situation,
since both R2 and the load will be bypassed by the short circuit on the output. Thus,



Vth =
VinR2RL

R1R2 + R1 (RL + R2)
= 10 V with load (39)

Rth =
Vth

Is
=

R1R2RL

R1R2 + R1 (RL + R2)
= 3.33 kΩ with load (40)

The power without a load present is I2R for each resistor. Since the resistors are the same, the
power in each is

P = I2R1 =
V2
inR1

(R1 + R2)
= 22.5 mW no load (41)

With a load present, the output voltage is Vo, which is the voltage across both R2 and RL. Since
R2 =RL, they have the same power. That means that the voltage across R1 is Vin−Vo. The power
in each must then be

P1 =
(Vin − Vo)

2

R1
= 40 mW with load (42)

P2 = PL =
V2
o

R2
= 10 mW with load (43)


