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Problem Set 5

Instructions:

1. Answer all questions below. Show your work for full credit.

2. All problems are due 30 September 2011 by 11:59pm.

3. You may collaborate, but everyone must turn in their own work.

1. The electric field of a long, straight line of charge with λ coulombs per meter is

E =
2keλ
r

where r is the distance from the wire. Suppose we move this line of charge parallel to itself at
speed v. (a) The moving line of charge constitutes an electric current. What is the magnitude of
this current? (b) What is the magnitude of the magnetic field produced by this current? (c) Show
that the magnitude of the magnetic field is proportional to the magnitude of the electric field, and
find the constant of proportionality.

Solution: The current can be found by thinking about how much charge passes through a given
region of space per unit time. If we were standing next to the wire, in a time ∆t, the length of wire
that passes by us would be v∆t. The corresponding charge is then ∆q=λv∆t, and thus the current
is

I =
∆q

∆t
=
λv∆t

∆t
= λv

From the current, we can easily find the magnetic field a distance r from the wire.

B =
µoI

2πr
=
µoλv

2πr

If the wire were sitting still (or we were traveling parallel to it at the same velocity v), it would
produce the electric field given above. Rearranging the given expression, we can relate λ and E,
λ=Er/2ke. Substituting this in our expression for the magnetic field,

B =
µoλv

2πr
=
µoErv

4πker
= µoεovE =

v

c2
E

For the last step, we noted that εo=1/4πke and c2 =1/εoµo.



2. A flat circular disk with radius R carries a uniform surface charge density σ. It rotates with an
angular velocity ω about the z-axis. Find the magnetic field B(z) at any point z along the rotation
axis.

Solution: First: see the schematic below.
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Figure 1: Problem 10 solution

Break up the disk into a series of loops of infinitesimal width. A given loop of radius r and thickness
dr will have a total area dA=2πrdr, and thus contain a total charge dQ=2πσrdr. This loop is
rotating at an angular velocity ω, which means that the charge dQ on our loop makes a circuit
around the axis every period of rotation, T = 2π/ω seconds. Since a charge dQ makes a circuit
every T seconds, our infinitesimally thin ring is a current loop:

dI =
dQ

T
=

2πσrdr
2π/ω

= σωrdr

For this single loop, equivalent to a current dI, we can easily calculate the field a distance z above
the axis. We did this in class, it is also an example problem in your textbook. Applied to the
present case, the solution is:

dB(z) =
µor

2dI

2 (r2 + z2)3/2
=

µor
3σωdr

2 (r2 + z2)3/2

In order to find the total field, we have to integrate over all possible infinitesimal rings, from r→ 0
to r=R:



B(z) =

∫R
0

µor
3σωdr

2 (r2 + z2)3/2

=
µoσω

2

∫R
0

r3dr

(b2 + z2)3/2

=
µoσω

2

[
2z2 + r2√
r2 + z2

]R
0

=
µoσω

2

[
2z2 + R2

√
R2 + z2

− 2
z2

z

]
=
µoσω

2

[
2z2 + R2

√
R2 + z2

− 2|z|

]

The absolute value bit at the end is a bit sneaky, but necessary. Physically, we need it for the
solution to be symmetric about z= 0, which it must be. Also, without it, the field would diverge
on one side of the disk, which is just silly.

3. Find the magnetic field at point P due to the current distribution shown below. Hint: Break
the loop into segments, and use superposition.
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Solution: The easiest way to do solve this is by superposition. Since the magnetic field obeys
superposition, we can consider our odd current loop above to be the same as two semicircles plus
two small straight segments. We know that the magnetic field at the center of a circular loop of
radius r carrying a current I is

B =
µoI

2r
(loop radius r)

This is easily derived from the Biot-Savart law, as found in the textbook. As a quick reminder,
for a circle of radius r, our infinitesimal length element dl is just rdθ. For a current circulating
around the ring in the θ̂ direction, a vector length element pointing along the current direction is



then d~l=rdθ θ̂. We can now apply the Biot-Savart law:

d~B =
µoI

4π
d~l× r̂

r2
=
µoI

4π
rdθ θ̂× r̂

r2
=
µoI

4πr
dθ ẑ

~B =

∫
circle

d~B =

2π∫
0

µoI

4πr
dθ ẑ =

µoI

4πr
dθ ẑ (2π) =

µoI

2r
ẑ

This is the field at the center of a full circle. Since the magnetic field obeys superposition, we could
just as well say that our full circle is built out of two equivalent half circles, like the one above! The
field from each half circle, by symmetry, must be half of the total field, so the field at the center of
a semicircle must simply be

B =
µoI

4r
(semicircle, radius r)

A more formal derivation goes just like the one above: simply replace the upper integration limit
with π instead of 2π. Fundamentally, integrating the little dB’s using the Biot-Savart law is just
saying the field from any current distribution can be built out of the fields of infinitesimal line
segments by superposition. That is what the integral is really “doing,” it is building a circle out of
tiny bits.

Anyway: for the problem at hand, we have two semicircular current segments contributing to the
magnetic field at P: one of radius b, and one of radius a. The currents are in the opposite directions
for the two loops, so their fields are in opposing directions. Based on the axes given, it is the outer
loop of radius b that has its field pointing out of the page in the ẑ direction, and the inner loop of
radius a in the −ẑ direction.

What about the straight bits of wire? The Biot-Savart law tells us that the magnetic field from
a segment of the straight wire is proportional to d~l × r̂. For the straight segments, d~l and r̂ are
parallel, and their cross product is zero. There is no field contribution at P from the straight
segments! Thus, the total field is just that due to the semicircular bits,

~B =
µoI

4b
ẑ −

µoI

4a
ẑ =

µoI

4

(
1
b

−
1
a

)
ẑ

4. The dielectric material between the plates of a parallel-plate capacitor has some non-zero
conductivity σ=1/ρ (thus it is a “leaky” capacitor). Let A represent the area of each plate, and d
their separation. Let κ represent the dielectric constant of the material. Show that the resistance
R and the capacitance C of the leaky capacitor are related by RC=κε0σ.



Solution: This is actually one crude model of charge transport across a cell membrane, among
other things. The capacitance of the structure is given by

C =
κεoA

d

Note that the capacitance per unit area scales as C/A∼1/d. What about our leaky capacitor? All
this means is that the capacitor lets some dc current through it, as if it had a resistor in parallel
that lets some charge “leak” around it. In other words, a “leaky” capacitor is just a parallel RC
circuit.

The resistive part of the circuit we can model as a slab of cross-sectional area A and the same
thickness d, which has then a resistance of R= ρd/A (here we imagine charge transfer across the
cell membrane, along the direction of the lipid molecules). The resistance area product then scales
as RA ∼ d. The time constant of a parallel RC circuit is just τ= RC. This is the same thing as
multiplying the capacitance per unit area and the resistance area product: τ= RC= (RA)(C/A).
This is an important point: we can calculate the time constant of our leaky capacitor without
knowing its area.

τ = RC = (RA)

(
C

A

)
=

(
ρd

A

)(
κεoA

d

)
= ρκεo

Independent of area, as desired, and also independent of thickness!

5. Two capacitors, one charged and the other uncharged, are connected in parallel. (a) Prove
that when equilibrium is reached, each carries a fraction of the initial charge equal to the ratio of
its capacitance to the sum of the two capacitances. (b) Show that the final energy is less than
the initial energy, and derive a formula for the difference in terms of the initial charge and the two
capacitances.

Solution: This problem is easiest to start if you approach it from a conservation of energy &
charge point of view. We have two capacitors. Initially, one capacitor stores a charge Q1i, while
the other is empty, Q2i=0. After connecting them together in parallel, some charge leaves the first
capacitor and goes to the second, leaving the two with charges Q1f and Q2f, respectively. Now,
since there were no sources hooked up, and we just have the two capacitors, the total amount of
charge must be the same before and after we hook them together:

Qi = Qf

Q1i +Q2i = Q1f +Q2f

Q1i = Q1f +Q2f



We also know that if two capacitors are connected in parallel, they will have the same voltage ∆V

across them:

∆Vf =
Q1f

C1
=
Q2f

C2

The fraction of the total charge left on the first capacitor can be found readily combining what we
have:

Q1f

Qi
=
Q1f

Q1i
=

Q1f

Q1f +Q2f
=

Q1f

Q1f + C2
C1
Q1f

=
C1Q1f

C1Q1f + C2Q1f
=

C1

C1 + C2

The second capacitor must have the rest of the charge:

Q2f

Qi
= 1 −

Q1f

Qi
= 1 −

C1

C1 + C2
=

C2

C1 + C2

That was charge conservation. We can also apply energy conservation, noting that the energy of a
charged capacitor is Q2/2C:

Ei = Ef

Q2
1i

2C1
=
Q2

1f

2C1
+
Q2

2f

2C2

The final energy can be simplified using the result of the first part of the problem - we note that
Q1f=QiC1/ (C1 + C2) and Q2f=QiC2/ (C1 + C2)

Ef =
Q2

1f

2C1
+
Q2

2f

2C2

=

(
QiC1

C1 + C2

)2 1
2C1

+

(
QiC2

C1 + C2

)2 1
2C2

=
Q2
iC1

2 (C1 + C2)
2 +

Q2
iC2

2 (C1 + C2)
2

=
Q2
i (C1 + C2)

2 (C1 + C2)
2 =

Q2
i

2 (C1 + C2)

=
Q2
i

2C1

(
C1

C1 + C2

)
= Ei

(
C1

C1 + C2

)

Thus, the final energy will be less than the initial energy, by a factor C1/ (C1 + C2) < 1.



6. Two long, cylindrical conductors of radius a1 and a2 are parallel and separated by a distance
d which is large compared with either radius. Find the capacitance per unit length of the two
conductors.

Solution: In order to find the capacitance per unit length between the two cylinders, we need
to find the potential difference between them assuming that one carries a charge Q and the other
−Q. Since the cylinders supposed to be “long,” we will say instead that each has a charge per unit
length of λ, with Q=λl, where l is the total length of the cylinder. Since we want capacitance per
unit length in the end, this will be convenient.

Let us choose a coordinate system which has its origin on the center of the first cylinder of radius
a1, which means the center of the second cylinder of radius a2 is located at r= d. Take the +r̂

direction to be along a line connecting the center of the two conductors toward the conductor of
radius r2.

a1
a2

r d − r

d

P

Figure 2: Geometry for problem 1.

Because the electric field obeys superposition, the total field at any point P is just the sum of the
fields due to each conductor separately. From Gauss’ law, we know that the field of each charged
conductor is the same as that of a charged rod of length l and charge per unit length λ. Taking
a point P along the axis connecting the center of the two conductors, we can find the total field
readily:

~Eleft =
λ

2πεor
r̂

~Eright =
−λ

2πεo (d− r)
(−r̂) =

λ

2πεo (d− r)
r̂

~Etot =
λ

2πεo

(
1
r

+
1

d− r

)
r̂

The potential difference between the two conductors can be found by integrating ~Etot · d~l over a
path connecting the surface of the two conductors. Since ~E is conservative, we can take any path
we like, and the most natural choice is to take a straight line path along r̂ along a line connecting



the centers of the two conductors (horizontal dashed line above), viz., r̂dr. Thus,

∆V =

d−a2∫
a1

~Etot · d~l =
λ

2πεo

d−a2∫
a1

(
1
r

+
1

d− r

)
r̂ · r̂dr =

λ

2πεo

d−a2∫
a1

1
r

+
1

d− r
dr

=
λ

2πεo

[
ln r− ln (d− r)

]d−a2

a1

=
λ

2πεo

[
ln
(
d− a2

a1

)
− ln

(
a2

d− a1

)]
=⇒ ∆V =

λ

2πεo
ln
[
(d− a1) (d− a2)

a1a2

]
=

Q

2πεol
ln
[
(d− a1) (d− a2)

a1a2

]

For the last line, we noted that λ =Q/l. Now using the definition of capacitance, Q = C∆V, or
C=Q/∆V, we have for the total capacitance

C =
2πεol

ln
[

a1a2
(d−a1)(d−a2)

]
or, as asked, the capacitance per unit length C/l:

C

l
=

2πεo

ln
[

a1a2
(d−a1)(d−a2)

] ≈ 2πεo
ln
[
a1a2
d2

] =
πε0

ln
[√
a1a2

d

]
The last two steps are valid when d�a1,a2, and indicate that the capacitance is governed by the
ratio of the geometric mean of the two conductors’ radii to their separation.

7. Find the equivalent capacitance for both combinations shown below. Be sure to consider the
symmetry involved and the relative electric potential at different points in the circuits.

C

C 2C

2C

3C

4.00µF

4.00µF2.00µF 8.00µF

2.00µF

Solution: In the first case, by symmetry the 3C capacitor has no potential difference across it.
Since capacitors in parallel have the same potential difference, both of the C capacitors have the
same potential difference, and that means that both ends of the 3C capacitor are at the same
potential. If that is true, then no charge is stored Q=C∆V=0, and we can simply replace the 3C
capacitor with a plain wire. Once we have done that, we have a pair of C capacitors connected in
parallel, in series with a pair of 2C capacitors which are also connected in parallel. The two C’s
give an equivalent capacitance of 2C, and the two 2C’s give an equivalent capacitance of 4C, so



the whole circuit is equivalent to 2C in series with 4C. This gives an equivalent capacitance of 4C/3.

In the second case, we can apply the same argument to the 8µF capacitor - it cannot have a
potential difference across it, and it can therefore be replaced with a plain old wire. That leaves us
with two pairs of 4µF and 2µF capacitors in parallel, each of which can be replaced with a single
6µF equivalent capacitor. The whole circuit is then equivalent to two 6µF capacitors in series,
which is itself equivalent to a single 3µF capacitor.

8. A capacitor is constructed from two square plates of sides l and separation d. A material of
dielectric constant κ is inserted a distance x into the capacitor, as shown below. (a) Find the
equivalent capacitance of this device as a function of x. (b) Calculate the energy stored in the
capacitor, letting ∆V represent the potential difference. (c) Find the direction and magnitude of
the force exerted on the dielectric, assuming a constant potential difference ∆V. Ignore friction.

κ

X

l

d

Solution: Whether the dielectric is there or not, we still have two plates held at a potential
difference of ∆V, and inserting the dielectric will not changes this. Therefore, once we have the
dielectric part way inserted, we can think of the situation as two capacitors in parallel - one filled
with dielectric of width x and length l, the other without dielectric of width l−x and length l. Both
effective capacitors still have a potential difference of ∆V applied. We can calculate the capacitance
of each, and the total equivalent, capacitance easily:

Cfilled =
κεoAfilled

d
=
κεolx

d

Cempty =
εoAempty

d
=
εo (l− x) l

d

Cequiv = Cfilled + Cempty =
εol

d

[
(κ− 1) x+ l

]
=
εol

2

d

[
x

l
(κ− 1) + 1

]

The last form is perhaps more pleasing, since it tells us the equivalent capacitance compared to
having no dielectric at all (ε0l

2/d). The total energy stored can now be found easily from the
equivalent capacitance and voltage. Remember: an equivalent capacitance is equivalent in every
way, so the energy in the equivalent capacitor is the same as that in the individual constituents.

U =
1
2
Cequiv (∆V)2 =

1
2

[
εol

2 (∆V)2

d

][
x

l
(κ− 1) + 1

]



How about the force? We know the energy as a function of position, so this too is easy:

|~F| = −
dU

dx
= −

εol

2d
(κ− 1) (∆V)2

The force in this case acts to the right, pulling the sheet in. This is because the dielectric is
polarizable - the top surface of the dielectric near the positive plate would develop a negative
charge, and be attracted to the capacitor, pulling the dielectric farther in. Another way to think
about it is that the capacitor stores more energy with the dielectric inside, so it will try to pull it
in and maximize its stored energy.i

9. Using the same figure as the previous question, imagine now that the block being inserted is
metal, rather than dielectric. Assume that d � l, and that the plates carries charges +Qo and
−Qo. (a) Calculate the stored energy as a function of x. (b) Find the direction and magnitude of
the force acting on the metallic block. Hint: a metal can be considered a perfect dielectric, κ→∞,
which allows no electric field to penetrate it.

Solution: Once again, we can consider this to be two capacitors in parallel: one filled with metal,
and the other empty. We have to imagine that the metal fills the left half of the capacitor, but
doesn’t touch the plates - otherwise, we would short out the capacitor and no charge would be
stored anywhere. Most likely, shorting out the capacitor like this would cause something to break
in a bad way.

Anyway: the metal-filled half of the capacitor doesn’t store any energy at all. A metal can be
considered analogous to a dielectric with κ→∞ Thus, for a fixed amount of charge Q0 and a fixed
voltage ∆V the stored energy Q2

o/2C → 0. Only the unfilled portion of the capacitor stores any
energy. If each plate in total has a charge Qo, then the unfilled portion of the plate must store
charge proportional to the uncovered area of the plate:

Qunfilled area =
Aunfilled

Atotal
Qo =

(l− x) x

l2
=
l− x

l
Qo

The capacitance of the unfilled region we have already calculated above. The stored energy in the
unfilled region, and thus the whole capacitor, is thus

U =
Q2

unfilled area

2Cunfilled
=

(
l−x
l Qo

)2
2εo(l−x)l

d

=
d (l− x)Q2

o

2εol3
=
Q2
od

2εol2

[
l− x

l

]
iIn fact, the presence of a force at all is entirely due to the fringing fields at the edges of the plates. After

all, if not for that region, the field would be perpendicular to the required direction of the force, and no work
could be done! For a good discussion of what is really going on, see The Feynman Lectures on Physics, vol. II,
ch. 10, pp. 8-9, or an excellent article in the American Journal of Physics, vol. 52, pp. 515-518, 1984, online here:
http://link.aip.org/link/?AJPIAS/52/515/1. The link will only work on campus.

http://link.aip.org/link/?AJPIAS/52/515/1


The last form makes it clear that the energy stored is that of a completely unfilled capacitor, times
the fraction (l − x)/l that the metal fills the capacitor. Once again, we find the force from the
gradient of the potential energy:

|~F| = −
dU

dx
=
Q2
od

2εol2

In this case, the force is actually to the left - the metal plate is pushed out of the capacitor, because
the capacitor stores more energy without it. Thus, the capacitor will expel the plate to maximize
its stored energy.


