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P. LeClair



official things
• Dr. Patrick LeClair

- leclair.homework@gmail.com

- @pleclair on twitter

- facebook/google+/etc

- offices: 2050 Bevill, 323 Gallalee; lab: 1053 Bevill

- 857-891-4267 (cell)

• Office hours:

- MW 1-2pm, F 12-2pm in Gallalee 323

- TuTh 1-3pm in Bevill 2050

• other times by appointment

mailto:pleclair@ua.edu
mailto:pleclair@ua.edu


official things
Lecture/Lab:

• lecture in 329 Gallalee, labs in 112 Gallalee

• M-W 11-12:55

“Recitation”:

• F 11-11:55

• usually new material, but time spent on HW       



Misc. Format Issues

• lecture and labs will be somewhat linked

• labs will mostly be ‘circuits’ and electronics

- practical knowledge more than theory

- will not bother with the traditional labs

• friday recitations: usually new material

• working in groups is encouraged for homework



social interaction

• we need you in groups of ~3 for labs to start with

• groups are not assigned ...

- so long as they remain functional

- even distribution of workload



Grading and so forth

• labs/exercises 15%

• homework 25%

given weekly via PDF

• quizzes

maybe. counts with HW

• 4 exams (15% each)

3 ‘hour’ exams

comprehensive (takehome) final



 Homework 

• new set every week, on course blog [pdf]

• problems due a week later (mostly)

• hard copy or email (e.g., scanned, cell pic) are OK

Gallalee or Bevill mailbox

at the start of class

• can collaborate - BUT turn in your own

• have to show your work to get credit. 



Name & ID

1.

Find / Given: Sketch:

Relevant equations: Symbolic solution:

Numeric solution: Double Check
Dimensions Order-of-magnitude



quizzes

• once and a while, there may be a quiz

• almost the same as current HW problems 

• previous lecture’s material

• 5-10 min anticipated

• do the homework & reading, and it will be trivial
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labs / exercises

• labs will be very different ...

- focus on learning how to build electronic stuff

- initially: focused labs to learn concepts & practice

- later: team project

• inquiry-driven: usually no set procedure

• some formal reports, mostly not

• time is always critical … 

- read carefully, work efficiently



stuff you need

• textbook (Halliday & Resnick; get a used one)

• calculator

• paper & writing implement

• useful: flash drive, access to a computer you can 
install stuff on



useful things

have the Feynman lectures in the undergrad lounge ...

7.2 Recommended text

Not required, but cheap, entertaining, and incredibly useful. We will be throwing you into the deep

end of vector calculus, this is your life preserver.

Schey, H.M. div, grad, curl and all that: an informal text on vector calculus. 4th ed. New York,

NY: W.W. Norton & Company, 2005. ISBN:0393925161.

7.3 Reference Texts

These are useful references you can find in the UA libraries. If you are a serious physics major, you

might think about picking up the first two used, they are worth their weight in gold.

Purcell, Edward M. Electricity and Magnetism. In Berkeley Physics Course. 2nd ed. Vol. 2. New

York, NY: McGraw-Hill, 1984. ISBN: 9780070049086.

Feynman, Richard P., Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics.

2nd ed. Vol. 1-2. Reading, MA: Addison-Wesley, 2005. ISBN: 9780805390452.

Horowitz, Paul and Hill, Winfield. The Art of Electronics 2nd ed. Cambridge University Press,

1989. ISBN: 0521370957

For some material (e.g., optics and circuits) we will make use of supplemental online notes from

PH102, which you can find there:

http://faculty.mint.ua.edu/~pleclair/ph102/Notes/

7.4 Calculator

A basic scientific calculator with trigonometric and logarithmic functions is required. Nothing more

complicated (such as a graphing calculator) will be of much additional help.

8 Course Web Site

In an attempt to make things easier for everyone, we have been using a “blog” format to make

available all course information as rapidly as possible. It will be constantly updated, for example to

provide homework hints, laboratory procedures, schedule updates, and various announcements, etc.

The course blog can be found at:

http://ph126.blogspot.com/
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showing up

• no make-up of in-class work or homework 

“acceptable” + documented gets you a BYE

• missing an exam is seriously bad.

acceptable reason ... makeup or weight final

• lowest single lab, homework are dropped. 

• Final is take-home, but you will have questions ...

so stick around for a bit of finals week



internets
• we have our own intertubes:

- http://ph126.blogspot.com/

- updated very often

- comments allowed & encouraged

- rss feed, integrated with twitter (#ua-ph126)

• google calendar (you can subscribe)

• Facebook group (find each other)

- can add RSS feed of blog to facebook

• google+, it is the new shiny

• check blog & calendar before class

http://ph126.blogspot.com
http://ph126.blogspot.com


THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Quick advertisement:

Phy-EE double major

• Electrical and Computer Engineering majors 
need as few as 4 additional hours to complete a 
second major in Physics. 

• This combination of fundamental and applied 
physics can be highly advantageous when the 
graduate enters the job market. 



THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Today

• Vectors and vector functions

• Laws of E&M in brief

• Charge & electric forces in brief



THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Our friend the vector

• we will be doing terrible things with them this 
semester.

• vector = quantity requiring an arrow to represent
– coordinate-free description
– described by basis (unit) vectors of a coordinate system 

• proper vectors are unchanged by coordinate 
transformations ...



THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Adding & subtracting vectors

• commutative,  A+B = B+A
• associative,  A + (B+C) = (A+B) + C
• subtracting = add negative (reverse direction)

• add head-tail geometrically (law of cosines)
• add by component (using unit vectors)



θ

�a +�b

|�a +�b| = |�a| + |�b|− 2|�a||�b| cos θ

�a +�b = (ax + bx) x̂ + (ay + by) ŷ

�a = axx̂ + ay ŷ �b = bxx̂ + by ŷ

�a

�b

THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Geometrically:

By components: first choose a basis/coordinate system

magnitude identical to geometric approach

�a

�b



c �A = caxx̂ + cay ŷ

c
�

�A + �B
�

= c �A + c �B

THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Scalar multiplication

• Duh, the vector gets longer. 
• By component:

• Geometrically: the arrow gets c times longer
• Distributive.



�A · �B = �B · �A �A ·
�

�B + �C
�

= �A · �B + �A · �C

�A · �B = axbx + ayby = | �A|| �B| cos θAB

THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Scalar (“dot”) product
• product of vector A and the projection of B onto A
• scalar product of two vectors gives a scalar

• commutes, distributes

• two vectors are perpendicular if and only if their scalar 
product is zero



THE UNIVERSITY OF ALABAMA DEPARTMENT OF PHYSICS AND ASTRONOMY

Put another way, given two vectors, the angle between them can be found readily:

θ = cos−1
�

�a · �b
|�a||�b|

�

Of course, this implies that if �a and �b are orthogonal (at right angles), their dot product is zero:

if �a ⊥ �b, then �a · �b = 0

Moreover, two vectors are orthogonal (perpendicular) if and only if their dot product is zero, and

they have non-zero length, providing a simple way to test for orthogonality. A few other properties

are tabulated below, as well as the scalar product between unit vectors in different coordinate

systems.

Table 4: Algebraic properties of the scalar product

formula relationship

�a · �b = �b ·�a commutative

�a · (�b +�c) = �a · �b +�a ·�c distributive

�a · (r�b +�c) = r(�a · �b) + r(�a ·�c) bilinear

(c1�a) · (c2�b) = (c1c2)(�a · �b) multiplication by scalars

if �a ⊥ �b, then �a · �b = 0 orthogonality

Table 5: Scalar products of unit vectors

Cartesian Spherical Cylindrical

ı̂ ̂ k̂ r̂ θ̂ ϕ̂ R̂ ϕ̂ k̂
ı̂ 1 0 0 sin θ cosϕ cos θ cosϕ - sinϕ cosϕ - sinϕ 0

̂ 0 1 0 sin θ sinϕ cos θ sinϕ cosϕ sinϕ cosϕ 0

k̂ 0 0 1 cos θ - sin θ 0 0 0 1

Vector products

The ‘cross’ or vector product between these two vectors results in a pseudovector, also known as an

‘axial vector.’i An easy way to remember how to calculate the cross product of these two vectors,

iPseudovectors act just like real vectors, except they gain a sign change under improper rotation. See for example,
the Wikipedia page “Pseudovector.” An improper rotation is an inversion followed by a normal (proper) rotation,
just what we are doing when we switch between right- and left-handed coordinate systems. A proper rotation has no
inversion step, just rotation.



vector (“cross”) product
• product of vector A and B, gives 3rd vector 

perpendicular to A-B plane

| �A× �B| = | �A|| �B| sin θAB

�A× �B = �A �B sin θAB n̂

n̂

• Distributes, does NOT commute

�A× �B = −
�

�B × �A
�

�A×
�

�B × �C
�

=
�

�A× �B
�

+
�

�A× �C
�



Table 6: Algebraic properties of the vector product

formula relationship

�a × �b = −�b×�a anticommutative

�a ×
�
�b +�c

�
=
�
�a × �b

�
+ (�a ×�c) distributive over addition

(r�a)× �b = �a × (r�b) = r(�a × �b) compatible with scalar multiplication

�a × (�b×�c) + �b× (�c×�a) +�c× (�a × �b) = 0 not associative; obeys Jacobi identity

�a × (�b×�c) = �b(�a · �b)−�c(�a · �b) triple vector product expansion

(�a × �b)×�c = −�c× (�a × �b) = −�a(�b ·�c) + �b(�a ·�c) triple vector product expansion

�a · (�b×�c) = �b · (�c×�a) = �c · (�a × �b) triple scalar product expansion†

|�a × �b|2 + |�a · �b|2 = |�a|2|�b|2 relation between cross and dot product

if �a × �b = �a ×�c then �b = �c iff �a · �b = �a ·�c lack of cancellation

†Note that the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it
were, it would leave the cross product of a vector and a scalar, which is not defined

ı̂× ̂ = k̂
̂× k̂ = ı̂

k̂× ı̂ = ̂





ax ay az

bx by bz

cx cy cz





Or, explicitly:

�A ·
�
�B× �C

�
=

��������

ax ay az

bx by bz

cx cy cz

��������
= (axbycz − axbzcy) + (aybzcx − aybxcz) + (azbxcy − azbycx)

Example: Solving systems of linear equations

Say we have three equations and three unknowns, and we are left with the pesky problem of solving

them. There are many ways to do this, we will illustrate two of them. Take, for example, three

equations that result from applying Kirchhoff’s rules to a particular multiple loop dc circuit:

familiarize yourself with these things later ...



vector (“cross”) product
• ‘perpendicular’ direction not unique!

choice of ‘handedness’ or chirality. we pick RH.

(a)

(b)

(c)

(d)

x̂

ŷ

ẑ

RH

x̂

ŷ

ẑ

LH RH

cross products are 
not the same as their 
mirror images

Table 6: Algebraic properties of the vector product

formula relationship

�a × �b = −�b×�a anticommutative
�a ×
�
�b +�c

�
=
�
�a × �b

�
+ (�a ×�c) distributive over addition

(r�a)× �b = �a × (r�b) = r(�a × �b) compatible with scalar multiplication
�a × (�b×�c) + �b× (�c×�a) +�c× (�a × �b) = 0 not associative; obeys Jacobi identity
�a × (�b×�c) = �b(�a · �b)−�c(�a · �b) triple vector product expansion
(�a × �b)×�c = −�c× (�a × �b) = −�a(�b ·�c) + �b(�a ·�c) triple vector product expansion
�a · (�b×�c) = �b · (�c×�a) = �c · (�a × �b) triple scalar product expansion†

|�a × �b|2 + |�a · �b|2 = |�a|2|�b|2 relation between cross and dot product
if �a × �b = �a ×�c then �b = �c iff �a · �b = �a ·�c lack of cancellation

†Note that the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it
were, it would leave the cross product of a vector and a scalar, which is not defined

ı̂× ̂ = k̂
̂× k̂ = ı̂

k̂× ı̂ = ̂

Example: Solving systems of linear equations

Say we have three equations and three unknowns, and we are left with the pesky problem of solving
them. There are many ways to do this, we will illustrate two of them. Take, for example, three
equations that result from applying Kirchhoff’s rules to a particular multiple loop dc circuit:

I1 − I2 − I3 = 0
R1I1 +R3I3 = V1

R2I2 −R3I3 = −V2

The first way we can proceed is by substituting the first equation into the second:

V1 = R1I1 +R3I3 = R1 (I2 + I3) +R3I3 = R1I2 + (R1 +R3) I3
=⇒ V1 = R1I2 + (R1 +R3) I3

Now our three equations look like this:

Table6:Algebraicpropertiesofthevectorproduct

formularelationship

�a×�b=−�b×�aanticommutative
�a×

�
�b+�c

�
=

�
�a×�b

�
+(�a×�c)distributiveoveraddition

(r�a)×�b=�a×(r�b)=r(�a×�b)compatiblewithscalarmultiplication
�a×(�b×�c)+�b×(�c×�a)+�c×(�a×�b)=0notassociative;obeysJacobiidentity
�a×(�b×�c)=�b(�a·�b)−�c(�a·�b)triplevectorproductexpansion
(�a×�b)×�c=−�c×(�a×�b)=−�a(�b·�c)+�b(�a·�c)triplevectorproductexpansion
�a·(�b×�c)=�b·(�c×�a)=�c·(�a×�b)triplescalarproductexpansion†

|�a×�b|2+|�a·�b|2=|�a|2|�b|2relationbetweencrossanddotproduct
if�a×�b=�a×�cthen�b=�ciff�a·�b=�a·�clackofcancellation
†Notethattheparenthesesmaybeomittedwithoutcausingambiguity,sincethedotproductcannotbeevaluatedfirst.Ifit

were,itwouldleavethecrossproductofavectorandascalar,whichisnotdefined

ı̂×̂=k̂
̂×k̂=ı̂

k̂×ı̂=̂

Example:Solvingsystemsoflinearequations

Saywehavethreeequationsandthreeunknowns,andweareleftwiththepeskyproblemofsolving
them.Therearemanywaystodothis,wewillillustratetwoofthem.Take,forexample,three
equationsthatresultfromapplyingKirchhoff’srulestoaparticularmultipleloopdccircuit:

I1−I2−I3=0
R1I1+R3I3=V1

R2I2−R3I3=−V2

Thefirstwaywecanproceedisbysubstitutingthefirstequationintothesecond:

V1=R1I1+R3I3=R1(I2+I3)+R3I3=R1I2+(R1+R3)I3
=⇒V1=R1I2+(R1+R3)I3

Nowourthreeequationslooklikethis:



(a)

(b)

(c)

(d)

x̂

ŷ

ẑ

RH

x̂

ŷ

ẑ

• Because of ‘handedness’ choice, cross products do not 
transform like true vectors under inversion

e.g., coordinate systems

x̂× ŷ = ẑ • cannot make RH into LH by proper rot.
• requires an inversion too (mirror flip)
• rotation + sign change required

• lack of invariance under improper rotation 
makes it a pseudovector or axial vector

• i.e., you need an axis of rotation to make 
sense of it.

• e.g., torque, magnetic field



• when we see cross products ... 
- somewhere, there is an axis of rotation
- the problem is inherently 3D

• cross product of two ‘normal’ polar vectors = axial vector
- polar = velocity, momentum, force
- axial = torque, angular momentum, magnetic field

• axial vector = handedness = RH rule required 
• axial vector doesn’t change properly in a mirror

- e.g., angular momentum of car wheels reflected in a mirror

• if there is no change when reflected in a mirror ... polar!



(polar) x (polar) = (axial)           
r x p = L    (angular momentum)

(axial) x (axial) = (axial)
Ω x L = τ  (gyroscope)

(polar) x (axial) = (polar)            
v x B = F  (magnetic force)

(any) · (any) = (scalar)
(polar) + (axial) = (neither) !!!



�c=�a × �b, is to take the determinant of the following matrix:





ı̂ ̂ k̂
ax ay az

bx by bz





Or, explicitly:

�c =

��������

ı̂ ̂ k̂
ax ay az

bx by bz

��������
=
�����
ay az

by bz

����� ı̂ +
�����
az ax

bz bx

����� ̂ +
�����
ax ay

bx by

����� k̂ = (aybz−azby) ı̂+(azbx−axbz) ̂+(axby−aybx) k̂

The magnitude of the cross product is

|�a × �b| = |�a||�b| sin θ

where θ is the smallest angle between �a and �b. Geometrically, the cross product is the (signed)

volume of a parallelepiped defined by the three vectors given. The pseudovector �c resulting from a

cross product of �a and �b is perpendicular to the plane formed by �a and �b, with a direction given

by the right-hand rule:

�a × �b = ab sin θ n̂

where n̂ is a unit vector perpendicular to the plane containing �a and �b. Note of course that if �a
and �b are collinear (i.e., the angle between them is either 0◦ or 180◦), the cross product is zero.

Right-hand rule

1. Point the fingers of your right hand along the direction of �a.

2. Point your thumb in the direction of �b.

3. The pseudovector �c = �a × �b points out from the back of your hand.

The cross product is also anticommutative, distributive over addition, and has numerous other

algebraic properties:

Finally, note that the unit vectors in a orthogonal coordinate system follow a cyclical permutation:

�c=�a × �b, is to take the determinant of the following matrix:





ı̂ ̂ k̂
ax ay az

bx by bz





Or, explicitly:

�c =

��������

ı̂ ̂ k̂
ax ay az

bx by bz

��������
=
�����
ay az

by bz

����� ı̂ +
�����
az ax

bz bx

����� ̂ +
�����
ax ay

bx by

����� k̂ = (aybz−azby) ı̂+(azbx−axbz) ̂+(axby−aybx) k̂

The magnitude of the cross product is

|�a × �b| = |�a||�b| sin θ

where θ is the smallest angle between �a and �b. Geometrically, the cross product is the (signed)

volume of a parallelepiped defined by the three vectors given. The pseudovector �c resulting from a

cross product of �a and �b is perpendicular to the plane formed by �a and �b, with a direction given

by the right-hand rule:

�a × �b = ab sin θ n̂

where n̂ is a unit vector perpendicular to the plane containing �a and �b. Note of course that if �a
and �b are collinear (i.e., the angle between them is either 0◦ or 180◦), the cross product is zero.

Right-hand rule

1. Point the fingers of your right hand along the direction of �a.

2. Point your thumb in the direction of �b.

3. The pseudovector �c = �a × �b points out from the back of your hand.

The cross product is also anticommutative, distributive over addition, and has numerous other

algebraic properties:

Finally, note that the unit vectors in a orthogonal coordinate system follow a cyclical permutation:

• cyclic permutation encodes chirality ...

�c=�a × �b, is to take the determinant of the following matrix:





ı̂ ̂ k̂
ax ay az

bx by bz





Or, explicitly:

�c =

��������

ı̂ ̂ k̂
ax ay az

bx by bz

��������
=
�����
ay az

by bz

����� ı̂ +
�����
az ax

bz bx

����� ̂ +
�����
ax ay

bx by

����� k̂ = (aybz−azby) ı̂+(azbx−axbz) ̂+(axby−aybx) k̂

The magnitude of the cross product is

|�a × �b| = |�a||�b| sin θ

where θ is the smallest angle between �a and �b. Geometrically, the cross product is the (signed)

volume of a parallelepiped defined by the three vectors given. The pseudovector �c resulting from a

cross product of �a and �b is perpendicular to the plane formed by �a and �b, with a direction given

by the right-hand rule:

�a × �b = ab sin θ n̂

where n̂ is a unit vector perpendicular to the plane containing �a and �b. Note of course that if �a
and �b are collinear (i.e., the angle between them is either 0◦ or 180◦), the cross product is zero.

Right-hand rule

1. Point the fingers of your right hand along the direction of �a.

2. Point your thumb in the direction of �b.

3. The pseudovector �c = �a × �b points out from the back of your hand.

The cross product is also anticommutative, distributive over addition, and has numerous other

algebraic properties:

Finally, note that the unit vectors in a orthogonal coordinate system follow a cyclical permutation:

• xyz, yzx, zxy = +       yxz, xzy, zyx = -
• know and love this little trick
• note ... one can use the cross product to find the vector 

normal to a given plane
n̂ =

�A× �B

| �A× �B|



Vector triples ... key identities that will come up often.

�A ·
�

�B × �C
�

= (vec) · (vec× vec) = vec · vec = scalar

�A ·
�

�B × �C
�

= �B ·
�

�C × �A
�

= �C ·
�

�A× �B
�

cyclic permutation! break it, and pick up a minus sign

�A ·
�

�B × �C
�

= − �B ·
�

�A× �C
�

(also, the volume of a parallelepiped)



Table 6: Algebraic properties of the vector product

formula relationship

�a × �b = −�b×�a anticommutative

�a ×
�
�b +�c

�
=
�
�a × �b

�
+ (�a ×�c) distributive over addition

(r�a)× �b = �a × (r�b) = r(�a × �b) compatible with scalar multiplication

�a × (�b×�c) + �b× (�c×�a) +�c× (�a × �b) = 0 not associative; obeys Jacobi identity

�a × (�b×�c) = �b(�a · �b)−�c(�a · �b) triple vector product expansion

(�a × �b)×�c = −�c× (�a × �b) = −�a(�b ·�c) + �b(�a ·�c) triple vector product expansion

�a · (�b×�c) = �b · (�c×�a) = �c · (�a × �b) triple scalar product expansion†

|�a × �b|2 + |�a · �b|2 = |�a|2|�b|2 relation between cross and dot product

if �a × �b = �a ×�c then �b = �c iff �a · �b = �a ·�c lack of cancellation

†Note that the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it
were, it would leave the cross product of a vector and a scalar, which is not defined

ı̂× ̂ = k̂
̂× k̂ = ı̂

k̂× ı̂ = ̂





ax ay az

bx by bz

cx cy cz





Or, explicitly:

�A ·
�
�B× �C

�
=

��������

ax ay az

bx by bz

cx cy cz

��������
= (axbycz − axbzcy) + (aybzcx − aybxcz) + (azbxcy − azbycx)

Example: Solving systems of linear equations

Say we have three equations and three unknowns, and we are left with the pesky problem of solving

them. There are many ways to do this, we will illustrate two of them. Take, for example, three

equations that result from applying Kirchhoff’s rules to a particular multiple loop dc circuit:

component form is nicely simple in matrix notation

xyz, yzx, zxy = +       yxz, xzy, zyx = -
distributes, associates, etc, and this works too:

�A ·
�

�B × �C
�

=
�

�A× �B
�

· �C

this is nonsense though. why?
�

�A · �B
�
× �C



vector triple

�A×
�

�B × �C
�

= �B
�

�A · �C
�
− C

�
�A · �B

�
�=

�
�A× �B

�
× �C

“BAC-CAB” rule
it will come up; this reduction formula is handy

a reminder that X does not commute

vec scal vec scal



x̂

ŷ

ẑ �r P(x, y, z)

|�r|2 = x2 + y2 + z2 = �r · �r

�r = xx̂ + yŷ + zẑ

r̂ =
�r

|�r| we remember how to define 
positions & directions



infinitesimal displacements along a path

(x, y, z)→ (x + dx, y + dy, z + dz)

described by a infinitesimal vector

d�l = dx x̂ + dy ŷ + dz ẑ

depends on coordinate system

(spherical)

P (x, y, z)

P �(x + dx, y + dy, z + dz)

d�l

d�l = dr r̂ + r sin θ dθ θ̂ + r dr dθ ϕ̂



x

y

z

ϕ R

(R, ϕ, z)

x

y

z

rθ

ϕ

(r, θ, ϕ)

x

y

z

(x, y, z)

cartesian
x,y,z

cylindrical
R,φ,z
s,φ,z

spherical
r,θ,φ



in E&M, we often have a SOURCE point and a FIELD point
we are interested in quantities depending on their separation

University of Alabama

Department of Physics and Astronomy

PH 126 / LeClair Fall 2009

Problem Set 1: Math review

Instructions:

1. Answer all questions below.

2. Some problems have different due dates!

3. You may collaborate, but everyone must turn in their own work

The following two problems are due Wed 26 August 2009 at the beginning of class.

1. Find the separation vector � = �r − �r � from the source point �r � = (3, 4, 5) to the field point

�r=(7, 2, 17). Determine its magnitude |� | and construct the corresponding unit vector ˆ.

2. Find the angle between the body diagonals of a cube. Use a vector product.

3. If �a= x̂− ŷ + ẑ, �b=2x̂− ŷ, and �c=3x̂ + 5ŷ− 7ẑ, verify the identity

�a ×
�
�b×�c

�
= (�a ·�c)�b−

�
�a · �b
�
�c

4. If �a and �b are given constant vectors and ω is a constant, describe the trajectory of a particle

given by �r(t)=�a cosωt+ �b sinωt. Verify the following

d2�r
dt2

+ ω2�r = 0 �r× d�r
dt

= ω�a × �b
����
d�r
dt

����
2
+ω2|�r|2 = ω2

�
|�a|2 + |�b|2

�

The following two problems are due Fri 28 August 2009 at the beginning of class.

5. If �F=yx̂−zŷ+xẑ, is there a potential ϕ such that �F= �∇ϕ? How about for �F=y2x̂−z3ŷ+x4ẑ?

6. Find the potential ϕ so that

�∇ϕ = �F =
�
y2 + 2xz2 − 1

�
x̂ + 2xyŷ +

�
2x2z + z3

�
ẑ

7. Sketch the vector function �v = r̂/r2 and compute its divergence. The answer should surprise

you. Can you explain it?

�r

�r �
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�a ×
�
�b×�c

�
= (�a ·�c)�b−

�
�a · �b
�
�c

4. If �a and �b are given constant vectors and ω is a constant, describe the trajectory of a particle

given by �r(t)=�a cosωt+ �b sinωt. Verify the following

d2�r
dt2

+ ω2�r = 0 �r× d�r
dt

= ω�a × �b
����
d�r
dt

����
2
+ω2|�r|2 = ω2

�
|�a|2 + |�b|2

�

The following two problems are due Fri 28 August 2009 at the beginning of class.
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ẑ

7. Sketch the vector function �v = r̂/r2 and compute its divergence. The answer should surprise

you. Can you explain it?

separation vector
(between you & stuff)

(where you are)

(where stuff is)

like in physics 1:  the origin can be in an arbitrary place

you are interested in how far you are from stuff
r = from origin to you
r’ = from origin to stuff
difference = from stuff to you!



we need two new concepts to deal with vector fields.

but only two!

(1) Flux

(2) Circulation



Flux?

basically, the net flow of a quantity through a region

e.g., liquid flux: liters/sec through a pipe of diameter d

Need to define a flow and a surface!

(Flux) = (average normal component)(surface area)

net flux through a closed region: 
must be a source or sink inside!

Φwater = (ρ�v · n̂) A

A

�v

n̂pipe



Net flux through circle - more arrows leave than enter

�F =
r̂

r2



!

!

normalA

Area = A 
’ = A cos !

E

both surfaces have the same flux!



q

S1

S2

S3

q

S1

S2

S3

(a) (b)all S have same flux all have zero flux
all that enters leaves

net ‘flow’ of a vector field out of a closed region



Circulation?

Just what you think it is: is the field ‘swirling’ at all?
Does it circulate?
Given some loop, is there net rotation?

E.g., stirred pot
there is no net flux
there is a circulation

circulation = (average tangential speed around a loop)(circumference)

pick a loop in the field, and find the average tangential velocity
if it is nonzero, the field circulates!



net CCW tangential velocity 
angular velocity about z axis

�F (x, y) = −yx̂ + xŷ



E&M: all about flux and circulation of E & B

(flux of E through a closed surface) =
(net charge inside)

�o

(circulation of E around C) =
d

dt
(flux of B through S)

given a curve C bounding a surface S:

(flux of B through any closed surface) = 0

c2(circulation of B around C) =
d

dt
(flux of E through S)

+
(flux of electric current through S)

�o



So how to do this quantitatively? 

We need vector derivatives for that.
Later.



The laws of classical physics, in brief

1. Motion

d�p

dt
= �F where �p =

m�v�
1− v2/c2

Newton, with Einstein’s modification

2. Gravitation

�F = −G
m1m2

r2
r̂12



3. Conservation of charge

�∇ ·�j = −dρ

dt

(flux of current through closed surface) = - (rate of change of charge inside)

any conservation of stuff:

(net flow of stuff out of a region) = 
(rate at which amount of stuff inside region changes)



4. Maxwell’s equations

(flux of E thru closed surface) = (charge inside)

(flux of B thru closed surface) = 0

(circulating E) = (time varying B)
(line integral of E around loop) = -(change of B flux through loop)

(circulating B) = (time varying E)
(integral of B around loop) = (current through loop) + (change of E flux through loop)

�∇ · �E =
ρ

�r�0

�∇ · �B = 0

�∇× �E = −∂�B

∂t

�0c
2 �∇× �B =�j + �r

∂�E

∂t

12



4. Maxwell’s equations (alt)

Magnetostatics:

�A(r) =
1

4π�0c2

� �J(r�)

|�r− �r�|
dV (13)

(derive scalar potential ...)

�µ�J =

mj=+J�

mj=−J

µB
mJ

J
exp

�
µmJB

kBT

�� mj=+J�

mj=−J

exp

�
µmJB

kBT

�
= µBBJ(z)

�

S

�E · d�A =
q

�0�r
=

1

�0�r

�

V
ρ dV

�

S

�B · d�A = 0
�

C

�E · d�l = − ∂

∂t

�

S

�B · d�A

�0c
2

�

C

�B · d�l =

�

S

�j · d�A + �r
∂

∂t

�

S

�E · d�A

�∇ · �E =
ρ

�r�0

�∇ · �B = 0

�∇ × �E = −∂�B

∂t

�0c
2 �∇ × �B =�j + �r

∂�E

∂t

11

Gauss: electric charge = source of electric fields

There are no magnetic charges

Faraday: time-varying B makes a circulating E

Ampere: currents and time-varying E make B

5. Force law

�F = q �E + q�v × �B



And that’s all of it!

Of course, the solutions are tougher ...
but we have a whole semester for that.



electrostatics

or, electric forces when nothing is moving.



48 3.2 Insulators and Conductors

Table 3.1: Properties of electrons, protons, and neutrons

Particle Charge [C] [e] Mass [kg]

electron (e−) −1.60×10−19 −1 9.11×10−31

proton (p+) +1.60×10−19 +1 1.67×10−27

neutron (n0) 0 0 1.67×10−27

Electrons are far lighter than protons, and are
more easily accelerated by forces. In addition, they
occupy the outer regions of atoms, and are more
easily gained or lost. Objects that become charged
to so by gaining or losing electrons, not protons.
Table 3.1 gives some properties of protons, electrons,
and neutrons.

Charge can be transferred from one material to
another. Many chemical reactions are, in essence,
charge transfer from one species to another (see

page 72 for some examples). Rubbing two materials together facilitates this process by increasing the area
of contact between the materials – e.g., rubbing a balloon on your hair. Since it is a gain or loss of electrons
that give a net charge, this means that when objects become charged, negative charge is transferred

from one object to another.

Units of charge:

The SI unit of charge is the Coulomb, [C]. One unit of charge is e=1.6× 10−19 [C]

Charge is never created or destroyed, only transferred from one object to another. Objects become

charged by gaining or losing electrons, transferring them to other objects. Charge is also quantized,
meaning it only comes in multiples of the fundamental unit of charge e.

Electrons are transferred, protons stay put!

1. electrons are light, and on the “outside” of the atom.
2. they are more easily moved by electric forces
3. they are more easily removed and transferred to other atoms/objects

An object can have a charge of ±e,±2e,±3e, etc, but not +0.27e or −0.71e.i Electrons have a negative
charge of one unit (−e), and protons have a positive charge of one unit (+e). The SI unit of charge is the
coulomb [C], and e has the value 1.6× 10−19 C. Since e is so tiny when measured in Coulombs, and since
it is the basic fundamental unit of charge, we will sometimes simply measure a small amount of charge in
“e’s” – how many individual unit charges are present.

Summarizing the properties of charge:

1. Charge is quantized in units of |e| = 1.6× 10−19 C
2. Electrons carry one unit of negative charge, −e

3. Protons carry one unit positive charge, +e

4. Objects become charged be gaining or losing electrons, not protons
5. Electric charge is always conserved

3.2 Insulators and Conductors

How do materials respond to becoming charged, and how do we charge up a material in the first place? What
do we mean by “becoming charged” anyway? This will be more clear shortly, but for now, we will presume

iQuarks are an exception we will cover at the end of the semester.
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“Little pieces of tissue paper (or light grains of sawdust) are 
attracted by a glass rod rubbed with a silk handkerchief (or by a 
piece of sealing wax or a rubber comb rubbed with flannel).”

- from a random 1902 science book
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3.11 Problems 77

18. Three charges are arranged in an equi-

lateral triangle, as shown at left. All three

charges have the same magnitude of charge,

|q1| = |q2| = |q3| =10
−9

C (note that q2 is neg-

ative though). What is the force on q2, mag-

nitude and direction?

� 9.0 nN, up (90
◦
);

� 16 nN, down (-90
◦
);

� 18 nN, down and left (225
◦
);

� 8.0 nN, up and right (-45
◦
)

q1 q3
1.0 m

q2

+ +

-

3.11 Problems

1. Two charges of +10
−6

C are separated by 1m along the

vertical axis. What is the net horizontal force on a charge of

−2×10
−6

C placed one meter to the right of the lower charge?

+10-6 C

+10-6 C

1m

1m

-2x10-6 C

2. Three point charges lie along the x axis, as

shown at left. A positive charge q1 =15 µC is

at x=2m, and a positive charge of q2 =6 µC

is at the origin. Where must a negative charge

q3 be placed on the x-axis between the two
positive charges such that the resulting elec-

tric force on it is zero?

q1

q2 q1

2.0 m

x

r23

q3

2.0 m - r23

+ +-
E23 E13

3. Why must hospital personnel wear special conducting shoes while working around oxygen in an

operating room? What might happen if they wore shoes with rubber soles?

4. Two solid spheres, both of radius R, carry identical total charges, Q. One sphere is a good conductor

while the other is an insulator. If the charge on the insulating sphere is uniformly distributed throughout

its interior volume, how do the electric fields outside these two spheres compare? Are the fields identical

inside the two spheres?

5. Two charges of 15 µC and 10 µC, respectively, lie along the x axis 1.0m apart. Where can a third

negative charge be placed on the x axis such that the resulting electric force on it is zero?

6. Two point charges q and −q are situated along the x axis a distance 2a apart as shown below. Show

that the electric field at a distant point along |x|>a along the x axis is Ex =4keqa/x3
.

PH 102 / General Physics II Dr. LeClair
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~ 0.77m from q2

or

~ 1.23m from q1



+ -q -q

(a) (b)



q q

A

B

C

equal charges

field:   A > B > C



q -q
opposite charges

“dipole”
e.g.,

LiF & HF



q1 q2unequal
like



q1 q2unequal
unlike



74 3.10 Quick Questions

6. A circular ring of charge of radius b has a total charge of q uniformly distributed around it. The
magnitude of the electric field at the center of the ring is:

� 0

� keq/b2

� keq
2/b2

� keq
2/b

� none of these.

7. Two isolated identical conducting spheres have a charge of q and−3q, respectively. They are connected
by a conducting wire, and after equilibrium is reached, the wire is removed (such that both spheres are
again isolated). What is the charge on each sphere?

� q, −3q

� −q, −q

� 0, −2q

� 2q, −2q

8. A single point charge +q is placed exactly at the center of a hollow conducting sphere of radius R.
Before placing the point charge, the conducting sphere had zero net charge. What is the magnitude of
the electric field outside the conducting sphere at a distance r from the center of the conducting sphere?
I.e., the electric field for r>R.

� |�E|=− keq
r2

� |�E|= keq
(R+r)2

� |�E|= keq
R2

� |�E|= keq
r2

(a) (b)

(c) (d)

9. Which set of electric field lines could rep-
resent the electric field near two charges of the
same sign, but different magnitudes?

� a

� b

� c

� d

Dr. LeClair PH 102 / General Physics II
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10. Referring again to the figure above, which set of electric field lines could represent the electric field
near two charges of opposite sign and different magnitudes?

� a

� b

� c

� d

11. A “free” electron and a “free” proton are placed in an identical electric field. Which of the following
statements are true? Check all that apply.

� Each particle is acted on by the same electric force and has the same acceleration.

� The electric force on the proton is greater in magnitude than the force on the electron, but in the opposite

direction.

� The electric force on the proton is equal in magnitude to the force on the electron, but in the opposite

direction.

� The magnitude of the acceleration of the electron is greater than that of the proton.

� Both particles have the same acceleration.

12. A point charge q is located at the center of a (non-conducting) spherical shell of radius a that has
a charge −q uniformly distributed on its surface. What is the electric field for all points outside the
spherical shell?

� none of these

� E =0

� E =q/4πr2

� E =kq/r2

� E =kq2/r2

13. What is the electric field inside the same shell a distance r <a from the center (i.e., a point inside
the spherical shell)?

� E =kq/r2

� E =kq2/r2

� none of these

� E =0

� E =q/4πr2
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Before placing the point charge, the conducting sphere had zero net charge. What is the magnitude of
the electric field outside the conducting sphere at a distance r from the center of the conducting sphere?
I.e., the electric field for r>R.

� |�E|=− keq
r2

� |�E|= keq
(R+r)2

� |�E|= keq
R2

� |�E|= keq
r2

(a) (b)

(c) (d)

9. Which set of electric field lines could rep-
resent the electric field near two charges of the
same sign, but different magnitudes?

� a

� b

� c

� d

Dr. LeClair PH 102 / General Physics II



3.10 Quick Questions 75

10. Referring again to the figure above, which set of electric field lines could represent the electric field
near two charges of opposite sign and different magnitudes?

� a

� b

� c

� d

11. A “free” electron and a “free” proton are placed in an identical electric field. Which of the following
statements are true? Check all that apply.

� Each particle is acted on by the same electric force and has the same acceleration.

� The electric force on the proton is greater in magnitude than the force on the electron, but in the opposite

direction.

� The electric force on the proton is equal in magnitude to the force on the electron, but in the opposite

direction.

� The magnitude of the acceleration of the electron is greater than that of the proton.

� Both particles have the same acceleration.

12. A point charge q is located at the center of a (non-conducting) spherical shell of radius a that has
a charge −q uniformly distributed on its surface. What is the electric field for all points outside the
spherical shell?

� none of these

� E =0

� E =q/4πr2

� E =kq/r2

� E =kq2/r2

13. What is the electric field inside the same shell a distance r <a from the center (i.e., a point inside
the spherical shell)?

� E =kq/r2

� E =kq2/r2

� none of these

� E =0

� E =q/4πr2
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6. A circular ring of charge of radius b has a total charge of q uniformly distributed around it. The
magnitude of the electric field at the center of the ring is:

� 0

� keq/b2

� keq
2/b2

� keq
2/b

� none of these.

7. Two isolated identical conducting spheres have a charge of q and−3q, respectively. They are connected
by a conducting wire, and after equilibrium is reached, the wire is removed (such that both spheres are
again isolated). What is the charge on each sphere?

� q, −3q

� −q, −q

� 0, −2q

� 2q, −2q

8. A single point charge +q is placed exactly at the center of a hollow conducting sphere of radius R.
Before placing the point charge, the conducting sphere had zero net charge. What is the magnitude of
the electric field outside the conducting sphere at a distance r from the center of the conducting sphere?
I.e., the electric field for r>R.

� |�E|=− keq
r2

� |�E|= keq
(R+r)2

� |�E|= keq
R2

� |�E|= keq
r2

(a) (b)

(c) (d)

9. Which set of electric field lines could rep-
resent the electric field near two charges of the
same sign, but different magnitudes?

� a

� b

� c

� d
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