Physics 126

P. LeClair

OFFICIAL THINGS

- Dr. Patrick LeClair
- leclair.homework@gmail.com
- @pleclair on twitter
- facebook/google+ / etc
- offices: 2050 Bevill, 323 Gallalee; lab: 1053 Bevill
- 857-891-4267 (cell)
- Office hours:
- MW 1-2pm, F 12-2pm in Gallalee 323
- TuTh 1-3pm in Bevill 2050
- other times by appointment

OFFICIAL THINGS

Lecture/Lab:

- lecture in 329 Gallalee, labs in 112 Gallalee
- M-W 11-12:55
"Recitation":
- F 11-11:55
- usually new material, but time spent on HW

MISC. FORMAT ISSUES

- lecture and labs will be somewhat linked
- labs will mostly be 'circuits' and electronics
- practical knowledge more than theory
- will not bother with the traditional labs
- friday recitations: usually new material
- working in groups is encouraged for homework

SOCIAL INTERACTION

- we need you in groups of ~ 3 for labs to start with
- groups are not assigned ...
- so long as they remain functional
- even distribution of workload

GRADING AND SO FORTH

- labs/ exercises 15%
- homework 25%
given weekly via PDF
- quizzes
maybe. counts with HW
- 4 exams (15% each)

3 'hour' exams
comprehensive (takehome) final

HOMEWORK

- new set every week, on course blog [pdf]
- problems due a week later (mostly)
- hard copy or email (e.g., scanned, cell pic) are OK

Gallalee or Bevill mailbox at the start of class

- can collaborate - BUT turn in your own
- have to show your work to get credit.
I.

Find / Given:	Sketch:

QUIZZES

- once and a while, there may be a quiz
- almost the same as current HW problems
- previous lecture's material
- 5-10 min anticipated
- do the homework \& reading, and it will be trivial

LABS / EXERCISES

- labs will be very different ...

- focus on learning how to build electronic stuff
- initially: focused labs to learn concepts \& practice
- later: team project
- inquiry-driven: usually no set procedure
- some formal reports, mostly not
- time is always critical ...
- read carefully, work efficiently

STUFF YOU NEED

- textbook (Halliday \& Resnick; get a used one)
- calculator
- paper \& writing implement
- useful: flash drive, access to a computer you can install stuff on

USEFUL THINGS

Purcell, Edward M. Electricity and Magnetism. In Berkeley Physics Course. 2nd ed. Vol. 2. New York, NY: McGraw-Hill, 1984. ISBN: 9780070049086.

Feynman, Richard P., Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics. 2nd ed. Vol. 1-2. Reading, MA: Addison-Wesley, 2005. ISBN: 9780805390452.

Horowitz, Paul and Hill, Winfield. The Art of Electronics 2nd ed. Cambridge University Press, 1989. ISBN: 0521370957

For some material (e.g., optics and circuits) we will make use of supplemental online notes from PH102, which you can find there:
http://faculty.mint.ua.edu/~pleclair/ph102/Notes/

have the Feynman lectures in the undergrad lounge ...

SHOWING UP

- no make-up of in-class work or homework
"acceptable" + documented gets you a BYE
- missing an exam is seriously bad. acceptable reason ... makeup or weight final
- lowest single lab, homework are dropped.
- Final is take-home, but you will have questions ... so stick around for a bit of finals week

INTERNETS

- we have our own intertubes:
- http://ph126.blogspot.com/
- updated very often
- comments allowed \& encouraged
- rss feed, integrated with twitter (\#ua-ph126)
- google calendar (you can subscribe)
- Facebook group (find each other)
- can add RSS feed of blog to facebook
- google+, it is the new shiny
- check blog \& calendar before class

Quick advertisement:

Phy-EE double major

- Electrical and Computer Engineering majors need as few as 4 additional hours to complete a second major in Physics.
- This combination of fundamental and applied physics can be highly advantageous when the graduate enters the job market.

Today

- Vectors and vector functions
- Laws of E\&M in brief
- Charge \& electric forces in brief

Our friend the vector

- we will be doing terrible things with them this semester.
- vector = quantity requiring an arrow to represent
- coordinate-free description
- described by basis (unit) vectors of a coordinate system
- proper vectors are unchanged by coordinate transformations ...

Adding \& subtracting vectors

- commutative, $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
- associative, $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
- subtracting $=$ add negative (reverse direction)
- add head-tail geometrically (law of cosines)
- add by component (using unit vectors)

Geometrically:

$$
|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|-2|\vec{a}||\vec{b}| \cos \theta
$$

By components: first choose a basis/coordinate system

$$
\begin{aligned}
& \vec{a}=a_{x} \hat{x}+a_{y} \hat{y} \quad \vec{b}=b_{x} \hat{x}+b_{y} \hat{y} \\
& \vec{a}+\vec{b}=\left(a_{x}+b_{x}\right) \hat{x}+\left(a_{y}+b_{y}\right) \hat{y}
\end{aligned}
$$

magnitude identical to geometric approach

Scalar multiplication

- Duh, the vector gets longer.
- By component:

$$
c \vec{A}=c a_{x} \hat{x}+c a_{y} \hat{y}
$$

- Geometrically: the arrow gets c times longer
- Distributive.

$$
c(\vec{A}+\vec{B})=c \vec{A}+c \vec{B}
$$

Scalar ("dot") product

- product of vector A and the projection of B onto A
- scalar product of two vectors gives a scalar

$$
\vec{A} \cdot \vec{B}=a_{x} b_{x}+a_{y} b_{y}=|\vec{A}||\vec{B}| \cos \theta_{A B}
$$

- commutes, distributes

$$
\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A} \quad \vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}
$$

- two vectors are perpendicular if and only if their scalar product is zero
formula relationship

$$
\begin{array}{cl}
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} & \text { commutative } \\
\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} & \text { distributive } \\
\overrightarrow{\mathbf{a}} \cdot(r \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=r(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})+r(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) & \text { bilinear } \\
\left(c_{1} \overrightarrow{\mathbf{a}}\right) \cdot\left(c_{2} \overrightarrow{\mathbf{b}}\right)=\left(c_{1} c_{2}\right)(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) & \text { multiplication by scalars } \\
\text { if } \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}, \text { then } \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0 & \text { orthogonality }
\end{array}
$$

vector ("cross") product

- product of vector A and B , gives 3rd vector perpendicular to A-B plane

$$
\begin{aligned}
& |\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta_{A B} \\
& \vec{A} \times \vec{B}=\vec{A} \vec{B} \sin \theta_{A B} \hat{n}
\end{aligned}
$$

- Distributes, does NOT commute
$\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \times \vec{B})+(\vec{A} \times \vec{C})$
$\vec{A} \times \vec{B}=-(\vec{B} \times \vec{A})$

familiarize yourself with these things later ...

formula	relationship
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$	anticommutative
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})$	distributive over addition
$(r \overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times(r \overrightarrow{\mathbf{b}})=r(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$	compatible with scalar multiplication
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})+\overrightarrow{\mathbf{c}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=0$	not associative; obeys Jacobi identity
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})-\overrightarrow{\mathbf{c}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$	triple vector product expansion
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=-\overrightarrow{\mathbf{c}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=-\overrightarrow{\mathbf{a}}(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})$	triple vector product expansion
$\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$	triple scalar product expansion
$\|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}\|^{2}+\|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}\|^{2}=\|\overrightarrow{\mathbf{a}}\|^{2}\|\overrightarrow{\mathbf{b}}\|^{2}$	relation between cross and dot product
if $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$ then $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}$ iff $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}$	lack of cancellation

vector ("cross") product

- 'perpendicular' direction not unique! choice of 'handedness' or chirality. we pick RH.
(a)

RH

cross products are not the same as their mirror images

$$
\begin{aligned}
\hat{\imath} \times \hat{\boldsymbol{\jmath}} & =\hat{\mathbf{k}} & -\hat{\boldsymbol{\imath}}=\hat{\mathbf{\imath}} \times \hat{\mathbf{s}} \\
\hat{\boldsymbol{\jmath}} \times \hat{\mathbf{k}} & =\hat{\imath} & -\hat{\boldsymbol{s}}=\hat{\boldsymbol{\imath}} \times \hat{\mathbf{\imath}} \\
\hat{\mathbf{k}} \times \hat{\boldsymbol{\imath}} & =\hat{\boldsymbol{\jmath}} & -\hat{\mathbf{\imath}}=\hat{\boldsymbol{\jmath}} \times \hat{\mathrm{l}}
\end{aligned}
$$

- Because of 'handedness' choice, cross products do not transform like true vectors under inversion
e.g., coordinate systems
$\hat{x} \times \hat{y}=\hat{z}$
(a)

RH
(b)

- cannot make RH into LH by proper rot.
- requires an inversion too (mirror flip)
- rotation + sign change required
- lack of invariance under improper rotation makes it a pseudovector or axial vector
- i.e., you need an axis of rotation to make sense of it.
- e.g., torque, magnetic field
- when we see cross products ...
- somewhere, there is an axis of rotation
- the problem is inherently 3D
- cross product of two 'normal' polar vectors = axial vector
- polar = velocity, momentum, force
- axial = torque, angular momentum, magnetic field
- axial vector $=$ handedness $=$ RH rule required
- axial vector doesn't change properly in a mirror
- e.g., angular momentum of car wheels reflected in a mirror
- if there is no change when reflected in a mirror ... polar!
$($ polar $) \times($ polar $)=($ axial $)$

$$
\mathrm{r} \times \mathrm{p}=\mathrm{L} \quad \text { (angular momentum) }
$$

$($ axial $) \times($ axial $)=($ axial $)$

$$
\Omega \times L=\tau \text { (gyroscope) }
$$

$($ polar $) \times($ axial $)=($ polar $)$

$$
\mathrm{v} \times \mathrm{B}=\mathrm{F} \text { (magnetic force) }
$$

(any) $\cdot($ any $)=($ scalar $)$
$($ polar $)+($ axial $)=($ neither $)!!!$

- cyclic permutation encodes chirality ...
$\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
$\overrightarrow{\mathbf{c}}=\left|\begin{array}{ccc}\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\mathbf{k}} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|=\left|\begin{array}{ll}a_{y} & a_{z} \\ b_{y} & b_{z}\end{array}\right| \hat{\imath}+\left|\begin{array}{cc}a_{z} & a_{x} \\ b_{z} & b_{x}\end{array}\right| \hat{\boldsymbol{\jmath}}+\left|\begin{array}{cc}a_{x} & a_{y} \\ b_{x} & b_{y}\end{array}\right| \hat{\mathbf{k}}$

$$
=\left(a_{y} b_{z}-a_{z} b_{y}\right) \hat{\boldsymbol{\imath}}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \hat{\boldsymbol{\jmath}}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{\mathbf{k}}
$$

- $x y z, y z x, z x y=+\quad y x z, x z y, z y x=-$
- know and love this little trick
- note ... one can use the cross product to find the vector normal to a given plane

$$
\hat{n}=\frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|}
$$

Vector triples ... key identities that will come up often.
$\vec{A} \cdot(\vec{B} \times \vec{C})=(\mathrm{vec}) \cdot(\mathrm{vec} \times \mathrm{vec})=\mathrm{vec} \cdot \mathrm{vec}=\mathrm{scalar}$
$\vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B})$
cyclic permutation! break it, and pick up a minus sign
$\vec{A} \cdot(\vec{B} \times \vec{C})=-\vec{B} \cdot(\vec{A} \times \vec{C})$
(also, the volume of a parallelepiped)

component form is nicely simple in matrix notation

$$
\overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|=\left(a_{x} b_{y} c_{z}-a_{x} b_{z} c_{y}\right)+\left(a_{y} b_{z} c_{x}-a_{y} b_{x} c_{z}\right)+\left(a_{z} b_{x} c_{y}-a_{z} b_{y} c_{x}\right)
$$

$x y z, y z x, z x y=+\quad y x z, x z y, z y x=-$ distributes, associates, etc, and this works too:
$\vec{A} \cdot(\vec{B} \times \vec{C})=(\vec{A} \times \vec{B}) \cdot \vec{C}$
this is nonsense though. why?
$(\vec{A} \cdot \vec{B}) \times \vec{C}$

vector triple

$$
\begin{aligned}
& \vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-C(\vec{A} \cdot \vec{B}) \neq(\vec{A} \times \vec{B}) \times \vec{C} \\
& \text { vec scal vec scal }
\end{aligned}
$$

"BAC-CAB" rule it will come up; this reduction formula is handy
a reminder that X does not commute

$|\vec{r}|^{2}=x^{2}+y^{2}+z^{2}=\vec{r} \cdot \vec{r}$
$\vec{r}=x \hat{x}+y \hat{y}+z \hat{z}$
$\hat{r}=\frac{\vec{r}}{|\vec{r}|}$
we remember how to define positions \& directions
infinitesimal displacements along a path

$$
(x, y, z) \rightarrow(x+d x, y+d y, z+d z)
$$

described by a infinitesimal vector

$$
P^{\prime}(x+d x, y+d y, z+d z)
$$

$$
d \vec{l}=d x \hat{x}+d y \hat{y}+d z \hat{z}
$$

depends on coordinate system

$$
d \vec{l}=d r \hat{r}+r \sin \theta d \theta \hat{\theta}+r d r d \theta \hat{\varphi} \quad \text { (spherical) }
$$

cartesian
x,y,z

cylindrical
R, φ, z
$\mathbf{S}, \varphi, \mathbf{Z}$

spherical
r, θ, φ
in E\&M, we often have a SOURCE point and a FIELD point we are interested in quantities depending on their separation

$$
\overrightarrow{\boldsymbol{r}}=\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}
$$

separation vector (between you \& stuff)
like in physics I: the origin can be in an arbitrary place
you are interested in how far you are from stuff
$r=$ from origin to you
$r^{\prime}=$ from origin to stuff
difference $=$ from stuff to you!
we need two new concepts to deal with vector fields.

but only two!

(I) Flux
(2) Circulation

Flux?

basically, the net flow of a quantity through a region
e.g., liquid flux: liters/sec through a pipe of diameter d

Need to define a flow and a surface!
(Flux) $=$ (average normal component)(surface area) A

$$
\Phi_{\text {water }}=(\rho \vec{v} \cdot \hat{n}) A
$$

net flux through a closed region: must be a source or sink inside!

Net flux through circle - more arrows leave than enter

$$
\vec{F}=\frac{\hat{r}}{r^{2}}
$$

both surfaces have the same flux!
net 'flow' of a vector field out of a closed region
(a) all S have same flux

(b)
all have zero flux all that enters leaves

Circulation?

Just what you think it is: is the field 'swirling' at all?
Does it circulate?
Given some loop, is there net rotation?
E.g., stirred pot there is no net flux there is a circulation
circulation $=$ (average tangential speed around a loop)(circumference)
pick a loop in the field, and find the average tangential velocity if it is nonzero, the field circulates!
net CCW tangential velocity angular velocity about z axis

$$
\vec{F}(x, y)=-y \hat{x}+x \hat{y}
$$

E\&M: all about flux and circulation of E \& B

(flux of E through a closed surface) $=\frac{(\text { net charge inside) }}{\epsilon_{o}}$
(flux of B through any closed surface) $=0$ given a curve C bounding a surface S :
(circulation of E around C$)=\frac{d}{d t}($ flux of B through S$)$
$c^{2}($ circulation of B around C$)=\frac{d}{d t}($ flux of E through S$)$
$+\frac{(\text { flux of electric current through S) }}{\epsilon_{o}}$

So how to do this quantitatively?

We need vector derivatives for that.
Later.

The laws of classical physics, in brief

I. Motion

$$
\frac{d \vec{p}}{d t}=\vec{F} \quad \text { where } \quad \vec{p}=\frac{m \vec{v}}{\sqrt{1-v^{2} / c^{2}}}
$$

Newton, with Einstein's modification
2. Gravitation

$$
\vec{F}=-G \frac{m_{1} m_{2}}{r^{2}} \hat{r}_{12}
$$

3. Conservation of charge

$$
\vec{\nabla} \cdot \vec{j}=-\frac{d \rho}{d t}
$$

(flux of current through closed surface) $=$ - (rate of change of charge inside)

any conservation of stuff:

(net flow of stuff out of a region) $=$
(rate at which amount of stuff inside region changes)

4. Maxwell's equations

$\vec{\nabla} \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\epsilon_{r} \epsilon_{0}}$ (flux of E thru closed surface) $=$ (charge inside)

$\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{B}}=0$ (flux of B thru closed surface) $=0$
$\vec{\nabla} \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}$
(circulating E) $=($ time varying B)
(line integral of E around loop) $=$-(change of B flux through loop)
$\epsilon_{0} c^{2} \vec{\nabla} \times \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{j}}+\epsilon_{r} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}$
(circulating B) $=($ time varying $E)$
(integral of B around loop) $=$ (current through loop) + (change of E flux through loop)

4. Maxwell's equations (alt)

$\vec{\nabla} \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\epsilon_{r} \epsilon_{0}}$
$\vec{\nabla} \cdot \overrightarrow{\mathbf{B}}=0$
$\vec{\nabla} \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}$
$\epsilon_{0} c^{2} \vec{\nabla} \times \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{j}}+\epsilon_{r} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}$
Gauss: electric charge = source of electric fields
There are no magnetic charges

Faraday: time-varying B makes a circulating E

Ampere: currents and time-varying E make B
5. Force law

$$
\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}
$$

And that's all of it!

Of course, the solutions are tougher ... but we have a whole semester for that.

electrostatics

or, electric forces when nothing is moving.

Summarizing the properties of charge:

1. Charge is quantized in units of $|e|=1.6 \times 10^{-19} \mathrm{C}$
2. Electrons carry one unit of negative charge, $-e$
3. Protons carry one unit positive charge, $+e$
4. Objects become charged be gaining or losing electrons, not protons
5. Electric charge is always conserved

Table 3.1: Properties of electrons, protons, and neutrons

Particle	Charge [C]	$[e]$	Mass [kg]
electron $\left(e^{-}\right)$	-1.60×10^{-19}	-1	9.11×10^{-31}
proton $\left(p^{+}\right)$	$+1.60 \times 10^{-19}$	+1	1.67×10^{-27}
neutron $\left(n^{0}\right)$	0	0	1.67×10^{-27}

a) before
charged rubber rod

b) contact
c) after

metal sphere

"Little pieces of tissue paper (or light grains of sawdust) are attracted by a glass rod rubbed with a silk handkerchief (or by a piece of sealing wax or a rubber comb rubbed with flannel)."

- from a random 1902 science book

2. Three point charges lie along the x axis, as shown at left. A positive charge $q_{1}=15 \mu \mathrm{C}$ is at $x=2 \mathrm{~m}$, and a positive charge of $q_{2}=6 \mu \mathrm{C}$ is at the origin. Where must a negative charge q_{3} be placed on the x-axis between the two positive charges such that the resulting electric force on it is zero?

3. Three point charges lie along the x axis, as shown at left. A positive charge $q_{1}=15 \mu \mathrm{C}$ is at $x=2 \mathrm{~m}$, and a positive charge of $q_{2}=6 \mu \mathrm{C}$ is at the origin. Where must a negative charge q_{3} be placed on the x-axis between the two positive charges such that the resulting electric force on it is zero?

$\sim 0.77 \mathrm{~m}$ from q_{2}
or
~ 1.23 m from qı

(a)

(b)
equal charges

field: $A>B>C$

4. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?
\square a
\square b
\square c
$\square \mathrm{d}$

5. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?
$\square \mathrm{a}$
\square b
$\square \mathrm{c}$
$\square \mathrm{d}$

6. Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of opposite sign and different magnitudes?
$\square \quad \mathrm{a}$
\square b
$\square \quad \mathrm{C}$
$\square \mathrm{d}$

7. Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of opposite sign and different magnitudes?
\square a
\square b
$\square \mathrm{c}$
$\square \mathrm{d}$

both surfaces have the same flux!
(a)
(b)

(a)

(b)

(a)
$(++++++++++++++++++++0$
(b)

