Physics 126

P. LeClair

OFFICIAL THINGS

- Dr. Patrick LeClair
 - <u>leclair.homework@gmail.com</u>
 - @pleclair on twitter
 - facebook/google+/etc
 - offices: 2050 Bevill, 323 Gallalee; lab: 1053 Bevill
 - 857-891-4267 (cell)
- Office hours:
 - MW 1-2pm, F 12-2pm in Gallalee 323
 - TuTh 1-3pm in Bevill 2050
- other times by appointment

OFFICIAL THINGS

Lecture/Lab:

- lecture in 329 Gallalee, labs in 112 Gallalee
- M-W 11-12:55

"<u>Recitation</u>":

- F 11-11:55
- usually new material, but time spent on HW

MISC. FORMAT ISSUES

- lecture and labs will be *somewhat* linked
- labs will mostly be 'circuits' and electronics
 - *practical* knowledge more than theory
 - will not bother with the traditional labs

- friday recitations: usually new material
- working in groups is encouraged *for homework*

SOCIAL INTERACTION

- we need you in groups of ~3 for labs to start with
- groups are not assigned ...
 - so long as they remain functional
 - even distribution of workload

GRADING AND SO FORTH

- labs/exercises 15%
- homework 25%

given weekly via PDF

• quizzes

maybe. counts with HW

• 4 exams (15% each)

3 'hour' exams

comprehensive (takehome) final

HOMEWORK

- new set every week, on course blog [pdf]
- problems due a week later (mostly)
- hard copy or email (e.g., scanned, cell pic) are OK
 Gallalee or Bevill mailbox
 at the start of class
- can collaborate BUT turn in your own
- have to show your work to get credit.

Ι.

Find / Given: Sketch:

Relevant equations:

Symbolic solution:

Numeric solution:		Double Check	
	Dimensions		Order-of-magnitude

QUIZZES

- once and a while, there may be a quiz
- almost the same as current HW problems
- previous lecture's material
- 5-10 min anticipated

• do the homework & reading, and it will be trivial

LABS / EXERCISES

- labs will be very different ...
 - focus on learning how to build electronic stuff
 - initially: focused labs to learn concepts & practice
 - later: team project
- inquiry-driven: usually no set procedure
- some formal reports, mostly not
- time is always critical ...
 - read carefully, work efficiently

STUFF YOU NEED

• textbook (Halliday & Resnick; get a used one)

• calculator

• paper & writing implement

• useful: flash drive, access to a computer you can install stuff on

USEFUL THINGS

Purcell, Edward M. Electricity and Magnetism. In Berkeley Physics Course. 2nd ed. Vol. 2. New York, NY: McGraw-Hill, 1984. ISBN: 9780070049086.

Feynman, Richard P., Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics. 2nd ed. Vol. 1-2. Reading, MA: Addison-Wesley, 2005. ISBN: 9780805390452.

Horowitz, Paul and Hill, Winfield. The Art of Electronics 2nd ed. Cambridge University Press, 1989. ISBN: 0521370957

For some material (e.g., optics and circuits) we will make use of supplemental online notes from PH102, which you can find there:

http://faculty.mint.ua.edu/~pleclair/ph102/Notes/

have the Feynman lectures in the undergrad lounge ...

SHOWING UP

no make-up of in-class work or homework
 "acceptable" + documented gets you a BYE

• missing an exam is seriously bad. acceptable reason ... makeup or weight final

• lowest single lab, homework are dropped.

• Final is take-home, but you will have questions ... so stick around for a bit of finals week

INTERNETS

- we have our own intertubes:
 - <u>http://ph126.blogspot.com/</u>
 - updated very often
 - comments allowed & encouraged
 - rss feed, integrated with twitter (#ua-ph126)
- google calendar (you can subscribe)
- Facebook group (find each other)
 - can add RSS feed of blog to facebook
- google+, it is the new shiny
- check blog & calendar before class

Quick advertisement:

Phy-EE double major

- Electrical and Computer Engineering majors need as few as 4 additional hours to complete a second major in Physics.
- This combination of fundamental and applied physics can be highly advantageous when the graduate enters the job market.

Today

- Vectors and vector functions
- Laws of E&M in brief
- Charge & electric forces in brief

Our friend the vector

- we will be doing terrible things with them this semester.
- vector = quantity requiring an arrow to represent
 coordinate-free description
 - described by basis (unit) vectors of a coordinate system
- proper vectors are unchanged by coordinate transformations ...

Adding & subtracting vectors

- commutative, A+B = B+A
- associative, A + (B+C) = (A+B) + C
- subtracting = add negative (reverse direction)
- add head-tail geometrically (law of cosines)
- add by component (using unit vectors)

Geometrically:

$$|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| - 2|\vec{a}||\vec{b}|\cos\theta$$

By components: first choose a basis/coordinate system

$$\vec{a} = a_x \hat{x} + a_y \hat{y} \qquad \vec{b} = b_x \hat{x} + b_y \hat{y}$$

$$\vec{a} + \vec{b} = (a_x + b_x)\,\hat{x} + (a_y + b_y)\,\hat{y}$$

magnitude identical to geometric approach

Scalar multiplication

- Duh, the vector gets longer.
- By component:

$$c\vec{A} = ca_x\hat{x} + ca_y\hat{y}$$

- Geometrically: the arrow gets *c* times longer
- Distributive.

$$c\left(\vec{A}+\vec{B}\right) = c\vec{A}+c\vec{B}$$

THE UNIVERSITY OF ALABAMA

Scalar ("dot") product

- product of vector A and the projection of B onto A
- scalar product of two vectors gives a *scalar*

$$\vec{A} \cdot \vec{B} = a_x b_x + a_y b_y = |\vec{A}| |\vec{B}| \cos \theta_{AB}$$

• commutes, distributes

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A} \qquad \vec{A} \cdot \left(\vec{B} + \vec{C}\right) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

• two vectors are perpendicular if and only if their scalar product is zero

A∣ cosθ

formula	relationship
$ec{\mathbf{a}}\cdotec{\mathbf{b}}=ec{\mathbf{b}}\cdotec{\mathbf{a}}$	commutative
$\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} + \vec{\mathbf{c}}) = \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{a}} \cdot \vec{\mathbf{c}}$	distributive
$\vec{\mathbf{a}} \cdot (r\vec{\mathbf{b}} + \vec{\mathbf{c}}) = r(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) + r(\vec{\mathbf{a}} \cdot \vec{\mathbf{c}})$	bilinear
$(c_1 \vec{\mathbf{a}}) \cdot (c_2 \vec{\mathbf{b}}) = (c_1 c_2) (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$	multiplication by scalars
if $\vec{\mathbf{a}} \perp \vec{\mathbf{b}}$, then $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$	orthogonality

vector ("cross") product

• product of vector A and B, gives 3rd vector perpendicular to A-B plane

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta_{AB}$$
$$\vec{A} \times \vec{B} = \vec{A} \vec{B} \sin \theta_{AB} \hat{n}$$

• Distributes, does **NOT** commute

$$\vec{A} \times \left(\vec{B} \times \vec{C}\right) = \left(\vec{A} \times \vec{B}\right) + \left(\vec{A} \times \vec{C}\right)$$
$$\vec{A} \times \vec{B} = -\left(\vec{B} \times \vec{A}\right)$$

familiarize yourself with these things later ...

formula	relationship
$ec{\mathbf{a}} imes ec{\mathbf{b}} = -ec{\mathbf{b}} imes ec{\mathbf{a}}$	anticommutative
$\vec{\mathbf{a}} \times \left(\vec{\mathbf{b}} + \vec{\mathbf{c}}\right) = \left(\vec{\mathbf{a}} \times \vec{\mathbf{b}}\right) + \left(\vec{\mathbf{a}} \times \vec{\mathbf{c}}\right)$ $(r\vec{\mathbf{a}}) \times \vec{\mathbf{b}} = \vec{\mathbf{a}} \times (r\vec{\mathbf{b}}) = r(\vec{\mathbf{a}} \times \vec{\mathbf{b}})$	distributive over addition
	compatible with scalar multiplication
$\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + \vec{\mathbf{b}} \times (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) + \vec{\mathbf{c}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) = 0$	not associative; obeys Jacobi identity
$\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \vec{\mathbf{b}} (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) - \vec{\mathbf{c}} (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$	triple vector product expansion
$(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = -\vec{\mathbf{c}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) = -\vec{\mathbf{a}}(\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}) + \vec{\mathbf{b}}(\vec{\mathbf{a}} \cdot \vec{\mathbf{c}})$	triple vector product expansion
$\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \vec{\mathbf{b}} \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) = \vec{\mathbf{c}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{b}})$	triple scalar product $expansion^{\dagger}$
$ ec{\mathbf{a}} imesec{\mathbf{b}} ^2+ ec{\mathbf{a}}\cdotec{\mathbf{b}} ^2= ec{\mathbf{a}} ^2 ec{\mathbf{b}} ^2$	relation between cross and dot product
if $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{a}} \times \vec{\mathbf{c}}$ then $\vec{\mathbf{b}} = \vec{\mathbf{c}}$ iff $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{a}} \cdot \vec{\mathbf{c}}$	lack of cancellation

vector ("cross") product

• 'perpendicular' direction not unique! choice of 'handedness' or chirality. we pick RH.

cross products are not the same as their mirror images

$$\hat{\imath} \times \hat{\jmath} = \hat{k} - \hat{\imath} = \hat{\jmath} \times \hat{\imath}$$

 $\hat{\jmath} \times \hat{k} = \hat{\imath} - \hat{\imath} = \hat{\imath} \times \hat{\jmath}$

 $\mathbf{k} imes \hat{\imath} = \hat{\jmath}$ – $\hat{\imath} = \hat{\imath} imes \mathbf{k}$

• Because of 'handedness' choice, cross products do not transform like true vectors under inversion

e.g., coordinate systems

- when we see cross products ...
 - somewhere, there is an axis of rotation
 - the problem is inherently 3D
- cross product of two 'normal' polar vectors = axial vector
 - polar = velocity, momentum, force
 - axial = torque, angular momentum, magnetic field
 - axial vector = handedness = RH rule required
 - axial vector doesn't change properly in a mirror
 - e.g., angular momentum of car wheels reflected in a mirror
 - if there is *no change* when reflected in a mirror ... polar!

(polar) x (polar) = (axial) r x p = L (angular momentum)

(axial) x (axial) = (axial)

$$\Omega x L = \tau$$
 (gyroscope)

(any) · (any) = (scalar)
(polar) + (axial) = (neither) !!!

- cyclic permutation encodes chirality ...
- $ec{\mathbf{c}}\!=\!ec{\mathbf{a}} imesec{\mathbf{b}}$

$$\vec{\mathbf{c}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \hat{\mathbf{i}} + \begin{vmatrix} a_z & a_x \\ b_z & b_x \end{vmatrix} \hat{\mathbf{j}} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \hat{\mathbf{k}}$$

$$= (a_y b_z - a_z b_y) \, \hat{\boldsymbol{\imath}} + (a_z b_x - a_x b_z) \, \hat{\boldsymbol{\jmath}} + (a_x b_y - a_y b_x) \, \hat{\boldsymbol{k}}$$

- xyz, yzx, zxy = + yxz, xzy, zyx = -
- know and love this little trick
- note ... one can use the cross product to find the vector normal to a given plane $\hat{n} = \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|}$

Vector triples ... key identities that will come up often.

$$\vec{A} \cdot \left(\vec{B} \times \vec{C} \right) = (\text{vec}) \cdot (\text{vec} \times \text{vec}) = \text{vec} \cdot \text{vec} = \text{scalar}$$

$$\vec{A} \cdot \left(\vec{B} \times \vec{C} \right) = \vec{B} \cdot \left(\vec{C} \times \vec{A} \right) = \vec{C} \cdot \left(\vec{A} \times \vec{B} \right)$$

cyclic permutation! break it, and pick up a minus sign

component form is nicely simple in matrix notation

$$\vec{\mathbf{A}} \cdot \left(\vec{\mathbf{B}} \times \vec{\mathbf{C}}\right) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = (a_x b_y c_z - a_x b_z c_y) + (a_y b_z c_x - a_y b_x c_z) + (a_z b_x c_y - a_z b_y c_x)$$

xyz, yzx, zxy = + yxz, xzy, zyx = distributes, associates, etc, and this works too:

$$\vec{A} \cdot \left(\vec{B} \times \vec{C} \right) = \left(\vec{A} \times \vec{B} \right) \cdot \vec{C}$$

this is nonsense though. why?

$$\left(\vec{A} \cdot \vec{B}
ight) imes \vec{C}$$

vector triple

 $\vec{A} \times \left(\vec{B} \times \vec{C} \right) = \vec{B} \left(\vec{A} \cdot \vec{C} \right) - C \left(\vec{A} \cdot \vec{B} \right) \neq \left(\vec{A} \times \vec{B} \right) \times \vec{C}$ vec scal vec scal

> "BAC-CAB" rule it will come up; this reduction formula is handy

a reminder that X does not commute

$$|\vec{r}|^2 = x^2 + y^2 + z^2 = \vec{r} \cdot \vec{r}$$
$$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$$

$$\hat{r} = \frac{\vec{r}}{|\vec{r}|}$$

we remember how to define positions & directions

infinitesimal displacements along a path

$$(x, y, z) \to (x + dx, y + dy, z + dz)$$

described by a infinitesimal vector

$$d\vec{l} = dx\,\hat{x} + dy\,\hat{y} + dz\,\hat{z}$$

depends on coordinate system

 $d\vec{l} = dr\,\hat{r} + r\sin\theta\,d\theta\,\hat{\theta} + r\,dr\,d\theta\,\hat{\varphi}$ (spherical)

in E&M, we often have a SOURCE point and a FIELD point we are interested in quantities depending on their separation

$$ec{\imath}=ec{\mathrm{r}}-ec{\mathrm{r}}'$$

separation vector (between you & stuff)

like in physics I: the origin can be in an arbitrary place

you are interested in how far you are from stuff r = from origin to you r' = from origin to stuff difference = from stuff to you! we need two new concepts to deal with vector fields.

but only two!

(I) Flux

(2) Circulation

Flux?

basically, the net flow of a quantity through a region

e.g., liquid flux: liters/sec through a pipe of diameter d Need to define a flow and a surface!

(Flux) = (average normal component)(surface area)

$$\Phi_{\text{water}} = \left(\rho \vec{v} \cdot \hat{n}\right) A$$

net flux through a *closed* region: must be a source or sink inside!

Net flux through circle - more arrows leave than enter

both surfaces have the same flux!

net 'flow' of a vector field out of a closed region

Circulation?

Just what you think it is: is the field 'swirling' at all? Does it circulate? Given some loop, is there net rotation?

E.g., stirred pot there is no net flux there is a circulation

circulation = (average tangential speed around a loop)(circumference)

pick a loop in the field, and find the average tangential velocity if it is nonzero, the field circulates!

net CCW tangential velocity angular velocity about z axis

E&M: all about flux and circulation of E & B

(flux of E through a closed surface) = $\frac{\text{(net charge inside)}}{\epsilon_o}$

(flux of B through any closed surface) = 0

given a curve C bounding a surface S:

(circulation of E around C) = $\frac{d}{dt}$ (flux of B through S)

 c^{2} (circulation of B around C) = $\frac{d}{dt}$ (flux of E through S) + $\frac{(\text{flux of electric current through S})}{dt}$

So how to do this quantitatively?

We need vector derivatives for that. Later.

The laws of classical physics, in brief

I. Motion

$$\frac{d\vec{p}}{dt} = \vec{F}$$
 where $\vec{p} = \frac{m\vec{v}}{\sqrt{1 - v^2/c^2}}$

Newton, with Einstein's modification

2. Gravitation

$$\vec{F} = -G\frac{m_1m_2}{r^2}\,\hat{r}_{12}$$

3. Conservation of charge

$$\vec{\nabla} \cdot \vec{j} = -\frac{d\rho}{dt}$$

(flux of current through closed surface) = - (rate of change of charge inside)

any conservation of stuff:

(net flow of stuff out of a region) =
(rate at which amount of stuff inside region changes)

4. Maxwell's equations

- $\vec{\nabla} \cdot \vec{\mathbf{E}} = rac{
 ho}{\epsilon_r \epsilon_0}$ (flux of E thru closed surface) = (charge inside)
- $\vec{\nabla} \cdot \vec{B} = 0$ (flux of B thru closed surface) = 0

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 (circulating E) = (time varying B)
(line integral of E around loop) = -(change of B flux through loop)

$$\epsilon_0 c^2 \vec{\nabla} \times \vec{\mathbf{B}} = \vec{\mathbf{j}} + \epsilon_r \frac{\partial \vec{\mathbf{E}}}{\partial t}$$

(circulating B) = (time varying E) (integral of B around loop) = (current through loop) + (change of E flux through loop) 4. Maxwell's equations (alt)

$$\vec{\nabla} \cdot \vec{\mathbf{E}} = \frac{\rho}{\epsilon_r \epsilon_0}$$
$$\vec{\nabla} \cdot \vec{\mathbf{B}} = 0$$
$$\vec{\nabla} \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$
$$\epsilon_0 c^2 \vec{\nabla} \times \vec{\mathbf{B}} = \vec{\mathbf{j}} + \epsilon_r \frac{\partial \vec{\mathbf{E}}}{\partial t}$$

Gauss: electric charge = source of electric fields

There are no magnetic charges

Faraday: time-varying B makes a circulating E

Ampere: currents and time-varying E make B

5. Force law

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

And that's all of it!

Of course, the solutions are tougher ... but we have a whole semester for that.

electrostatics

or, electric forces when nothing is moving.

Summarizing the properties of charge:

- 1. Charge is quantized in units of $|e| = 1.6 \times 10^{-19} \,\mathrm{C}$
- 2. Electrons carry one unit of negative charge, -e
- 3. Protons carry one unit positive charge, +e
- 4. Objects become charged be gaining or losing electrons, not protons
- 5. Electric charge is always conserved

 Table 3.1: Properties of electrons, protons, and neutrons

Particle	Charge [C]	[e]	Mass [kg]
electron (e^{-})	-1.60×10^{-19}	-1	9.11×10^{-31}
proton (p^+)	$+1.60{ imes}10^{-19}$	+1	1.67×10^{-27}
neutron (n^0)	0	0	1.67×10^{-27}

"Little pieces of tissue paper (or light grains of sawdust) are attracted by a glass rod rubbed with a silk handkerchief (or by a piece of sealing wax or a rubber comb rubbed with flannel)."

- from a random 1902 science book

+

┿

2. Three point charges lie along the x axis, as shown at left. A positive charge $q_1 = 15 \,\mu\text{C}$ is at $x = 2 \,\text{m}$, and a positive charge of $q_2 = 6 \,\mu\text{C}$ is at the origin. Where must a *negative* charge q_3 be placed on the x-axis **between the two positive charges** such that the resulting electric force on it is zero?

2. Three point charges lie along the x axis, as shown at left. A positive charge $q_1 = 15 \,\mu\text{C}$ is at $x = 2 \,\text{m}$, and a positive charge of $q_2 = 6 \,\mu\text{C}$ is at the origin. Where must a *negative* charge q_3 be placed on the x-axis **between the two positive charges** such that the resulting electric force on it is zero?

~ 0.77m from q₂

or

~ 1.23m from q1

(a)

9. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?

- \Box a
- \square b
- \Box C
- \Box d

9. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?

- \Box a
- \square b
- \Box C
- \Box d

- **10.** Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of *opposite sign* and *different magnitudes*?
 - \Box a
 - \square b
 - \Box c
 - \Box d

10. Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of *opposite sign* and *different magnitudes*?

- \Box a
- \square b
- □ c
- \Box d

both surfaces have the same flux!

(a)

(a**)**

(b)

