today: dc circuits

mostly current & resistance

Α

В

С

WE WERE GOING TO USE THE TIME MACHINE TO PREVENT THE ROBOT APOCALYPSE, BUT THE GUY WHO BUILT IT WAS AN ELECTRICAL ENGINEER. not so funny now.

just wait ...

I = Cause/Resistance

I is the current, or flow rate, describes different scenes:

Resistance *R* has the same form in most cases,

 $R = \rho L/A$

Transport what?	Heat	Electric charges	Displacement of a molecule in a fluid	Volume of fluid
Current form (items/second)	$I = -\Delta T/R$	$I = -\Delta V/R$	$v_{\rm av} \equiv I = -\Delta P/R$	$I = -\Delta P/R$
Current units	J/s or W	C/s or amperes	m/s	m ³ /s
Resistance form	$R = \rho L/A$	$R = \rho L/A$	$R = \rho L/A$	$R = \rho L/A^2$
Detail of ρ (resistivity)	ho = 1/heat conductivity	ρ = electrical resistivity	$\rho = 6\eta\pi$	$\rho = 8\eta\pi$

```
battery = pump
voltage = pressure
current = flow
resistor = constriction
capacitor = diaphragm / flexible reservoir
diode = check valve
inductor = paddle wheel
```


real V source = ideal V source + R

actual circuit has a parasitic r

R in series with output ("steals" V)

real current sources

current source

R in parallel with output ("steals" I)

series resistors: conservation of energy

Two Resistors in Series:

 $R_{\rm eq} = R_1 + R_2$

Three or More Resistors in Series:

 $R_{\rm eq} = R_1 + R_2 + R_3 + \dots$

The current through resistors in series is the same.

voltage divider

parallel resistors: conservation of charge

Two Resistors in Parallel:

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Three or More Resistors in Parallel:

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

current divider

THE UNIVERSITY OF ALABAMA

rank the currents

more complex arrangements

THE UNIVERSITY OF ALABAMA

measuring voltage

measuring current

a simple ammeter

dc Circuits, part II

same thing, just more of it

Thévenin equivalents

This image: Horowitz & Hill, The art of electronics

$$V_{th} = V$$
 (open circuit)
 $R_{th} = \frac{V$ (open circuit)}{I (closed circuit)}

any combination of R's and V's is equivalent to a SINGLE R and V

disconnect from red dots = open circuit voltage short red dots, current *there* is closed-circuit current.

(Norton equivalent: a single I source in parallel with R)

series resistors: conservation of energy

parallel resistors: conservation of charge

Two Resistors in Parallel:

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Three or More Resistors in Parallel:

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

source current =
sum of currents
in resistors

current divider

THE UNIVERSITY OF ALABAMA

so what?

V source loading

THE UNIVERSITY OF ALABAMA

I source loading

THE UNIVERSITY OF ALABAMA

measuring the meter

summary

voltmeter wants R **low**! can use a buffer/follower ... later

- I source wants R **low** transformer pre-amp consider sourcing V
- V source wants R **high** large series + parallel resistors present large R

Sourcing current

This is what a hand meter does.

Why is it no good?

Sourcing current, properly

You just need four wires.

Sourcing voltage

Still have to measure voltage on device the wires still use up some of V What about current?

Sourcing voltage better

source/meter resistances

voltmeter wants R low but V source wants R high

need buffer/amp on V meter resistor in parallel with source

if V source is problem, R is too low consider sourcing I

what if I want to measure a *really* high R?

what if I want to measure a *really* low R?

this works just fine ...

so long as your V meter is good or you can tolerate large I v. good amp / part of a bridge

balance bridge to V=0 detect small changes from null

$$R_2 = - \sqrt{2} \sqrt{-1} \sqrt{2} \sqrt{2} \sqrt{2}$$

~ \(\C_3)

make R_1 - R_3 about the same trimming resistor on $R_2 = dR$

$$V = \left(\frac{R_x}{R_3 + R_x} - \frac{R_2}{R_1 + R_2}\right) V_s$$

$$R_x = \frac{R_3 R_2}{R_1}$$

THE UNIVERSITY OF ALABAMA

Rules for analyzing more complicated circuits

THE UNIVERSITY OF ALABAMA

capacitors

Definition of Capacitance: the capacitance C is the ratio of the charge stored on one conductor (or the other) to the potential difference between the conductors:

 $C\equiv \frac{|Q|}{|\Delta V|}$

(4.12)

frequency-dependent resistor I and V are 90° out of phase can't dissipate power, ideally

$$I = \frac{dQ}{dt} = \frac{d(CV)}{dt} \to C\frac{dV}{dt}$$

Capacitance of a parallel plate capacitor:

$$C = \epsilon_0 \frac{A}{d}$$

where d is the spacing between the plates, and A is the area of the plates.

combinations of capacitors

Two Capacitors in Parallel:

$$C_{\rm eq} = C_1 + C_2$$

Three or More Capacitors in Parallel:

 $C_{\rm eq} = C_1 + C_2 + C_3 + \dots$

Two Capacitors in Series:

$$\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Three or More Capacitors in Series:

$$\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots$$

THE UNIVERSITY OF ALABAMA

capacitors with stuff inside

THE UNIVERSITY OF ALABAMA

rc circuits

THE UNIVERSITY OF ALABAMA

RC differentiator

RC integrator

so what?

filtering of signals

unintentional capacitive coupling see from waveform shape

more later

THE UNIVERSITY OF ALABAMA

ac resistive circuits

nothing earth-shattering happens

except P is lower than you expect

ac capacitive circuits

I and V 90° out of phase average power is ZERO

frequency response? insulating at dc conducting at high f

voltage "lags" current $Z = \frac{1}{iwC} = \frac{-1}{2\pi i fC}$

familiar?

audio crossovers

parallel

