today: dc circuits

mostly current \& resistance

$$
I=\frac{\Delta Q}{\Delta t}
$$

$$
A
$$

Δt

not so funny now.

WE WERE GOING TO USE THE TIME MACHINE TO PREVENT THE ROBOT APOCALYPSE, BUT THE GUY WHO BUILT IT WAS AN ELECTRICAL ENGINEER.

$I=$ Cause/Resistance

I is the current, or flow rate, describes different scenes:
(a) Heat flow through a wall

(b) Charge
flow through a wire

(c) Fluid flow through a pipe

Resistance R
has the same form in most cases,

$$
R=\rho L / A
$$

Transport what?	Heat	Electric charges	Displacement of a molecule in a fluid	Volume of fluid
Current form (items/second)	$I=-\Delta T / R$	$I=-\Delta V / R$	$v_{\mathrm{av}} \equiv \mathrm{I}=-\Delta P / R$	$I=-\Delta P / R$
Current units	J / s or W	C/s or amperes	m / s	$\mathrm{m}^{3} / \mathrm{s}$
Resistance form	$R=\rho L / A$	$R=\rho L / A$	$R=\rho L / A$	$R=\rho L / A^{2}$
Detail of ρ (resistivity)	$\rho=\mathbf{1} /$ heat conductivity	$\rho=$ electrical resistivity	$\rho=\mathbf{6} \eta \pi$	$\rho=\mathbf{8} \eta \pi$

> battery $=$ pump voltage $=$ pressure
> current $=$ flow resistor $=$ constriction capacitor $=$ diaphragm $/$ flexible reservoir diode $=$ check valve inductor $=$ paddle wheel

(a)

$$
\Delta V=V_{b}-V_{a}=-I R
$$

(b)

(c)

$$
V_{a}=+I R \quad V_{b}=0
$$

real V source $=$ ideal V source +R

actual circuit has a parasitic r

b)

R in series with output ("steals" V)

real current sources

current source
R in parallel with output ("steals" I)

series resistors: conservation of energy

Two Resistors in Series:

$$
R_{\mathrm{eq}}=R_{1}+R_{2}
$$

Three or More Resistors in Series:

$$
R_{\mathrm{eq}}=R_{1}+R_{2}+R_{3}+\ldots
$$

The current through resistors in series is the same.

voltage divider

$$
V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}} V_{\text {in }}
$$

parallel resistors: conservation of charge

$\Delta V_{1}=\Delta V_{2}=\Delta V$

$$
\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

ΔV

Two Resistors in Parallel:

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Three or More Resistors in Parallel:

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

current divider

rank the currents

more complex arrangements

(c)

(b)

measuring voltage

! INCORRECT!
b)

real voltmeters

(a)

(b)

measuring current

a)

! INCORRECT!
b)

CORRECT

a simple ammeter

dc Circuits, part II

same thing, just more of it

Thévenin equivalents

This image: Horowitz \& Hill, The art of electronics

$\mathrm{V}_{\text {th }}=\mathrm{V}$ (open circuit)

$\frac{\mathrm{V} \text { (open circuit) }}{\mathrm{I} \text { (closed circuit) }}$
any combination of R's andV's is equivalent to a SINGLE R andV disconnect from red dots = open circuit voltage short red dots, current there is closed-circuit current.
(Norton equivalent: a single I source in parallel with R)

series resistors: conservation of energy

Two Resistors in Series:

$$
R_{\mathrm{eq}}=R_{1}+R_{2}
$$

Three or More Resistors in Series:

$$
R_{\mathrm{eq}}=R_{1}+R_{2}+R_{3}+\ldots
$$

The current through resistors in series is the same.

parallel resistors: conservation of charge

$\Delta V_{1}=\Delta V_{2}=\Delta V$

Two Resistors in Parallel:

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Three or More Resistors in Parallel:

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

$\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

ΔV

so what?

real sources $=$
ideal sources +R
real meter $=$ ideal meter with R

V source loading

$\Delta V_{\text {load }}=V-I r$
for $r \ll R_{\text {load }}$, $\Delta V_{\text {load }} \approx V$

V source wants R high
extra series resistance
one solution:
large resistor in parallel with load

I source loading

$$
\begin{gathered}
I_{\text {load }}=1 \frac{r}{r+R} \\
\text { for } R_{\text {load }}<r, \\
I_{\text {load }} \approx 1
\end{gathered}
$$

source
extra parallel resistance

I source wants R Iow

 sourcing currents at high $R_{\text {load }}$ is hard
measuring the meter

$\Delta V_{\text {load }}=I R_{\text {eq }}=\frac{R}{1+R / r} I \quad R_{\text {load }}<r, \Delta V_{\text {load }} \approx I R$

summary

voltmeter wants R low! can use a buffer/follower ... later

I source wants R Iow
transformer pre-amp consider sourcing V
V source wants R high large series + parallel resistors present large R

Sourcing current

This is what a hand meter does.

Why is it no good?

Sourcing current, properly

No problem.
You just need four wires.

Sourcing voltage

Still have to measure voltage on device the wires still use up some of V
What about current?

Sourcing voltage better

source/meter resistances

voltmeter wants R low but V source wants R high
need buffer/amp on V meter resistor in parallel with source
if V source is problem, R is too low consider sourcing I

what if I want to measure a *really* high R?

what if I want to measure a *really* low R?

$R_{\text {wires }}$
this works just fine ...
so long as your V meter is good or you can tolerate large I v. good amp / part of a bridge

what if I want to measure a small change in R ?

balance bridge to $V=0$ detect small changes from null

$$
\begin{array}{r}
\mathrm{R}_{2}=-1 W-W \\
\\
\approx R_{3}
\end{array}
$$

make $R_{1}-R_{3}$ about the same trimming resistor on $R_{2}=d R$

$$
R_{x}=\frac{R_{3} R_{2}}{R_{1}}
$$

Rules for analyzing more complicated circuits

(a)

$$
\Delta V=V_{b}-V_{a}=-I R
$$

(b)

$$
\Delta V=V_{b}-V_{a}=+I R
$$

$\Delta V=V_{b}-V_{a}=+\varepsilon$

$\Delta V=V_{b}-V_{a}=-\varepsilon$
(a)

(b)

capacitors

Definition of Capacitance: the capacitance C is the ratio of the charge stored on one conductor (or the other) to the potential difference between the conductors:

$$
\begin{equation*}
C \equiv \frac{|Q|}{|\Delta V|} \tag{4.12}
\end{equation*}
$$

frequency-dependent resistor I and V are 90° out of phase can't dissipate power, ideally

$$
I=\frac{d Q}{d t}=\frac{d(C V)}{d t} \rightarrow C \frac{d V}{d t}
$$

Capacitance of a parallel plate capacitor:

$$
C=\epsilon_{0} \frac{A}{d}
$$

where d is the spacing between the plates, and A is the area of the plates.

combinations of capacitors

Two Capacitors in Parallel:

$$
C_{\mathrm{eq}}=C_{1}+C_{2}
$$

Three or More Capacitors in Parallel:

$$
C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}+\ldots
$$

Two Capacitors in Series:

$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
$$

Three or More Capacitors in Series:

$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \ldots
$$

(b)

capacitors with stuff inside

Parallel plate capacitor with a dielectric between the plates:

$$
\begin{equation*}
C=\kappa \epsilon_{0} \frac{A}{d}=\epsilon_{r} \epsilon_{0} \frac{A}{d} \tag{4.29}
\end{equation*}
$$

the dielectric increases the capacitance by a factor κ, the dielectric constant. The dielectric constant is also written ϵ_{r} sometimes.

rc circuits

Time constant τ of an $R C$ circuit:

$$
\begin{equation*}
V \propto e^{-T / R C} \tag{6.27}
\end{equation*}
$$

$$
\tau=R C
$$

This gives τ in seconds [s] when R is in Ohms $[\Omega]$ and C is in farads $[\mathrm{F}]$.

RC differentiator

$$
\left.\begin{array}{l}
I=C \frac{d}{d t}\left(V_{\text {in }}-V\right)=\frac{V}{R} \\
\quad \text { for small RC, } \\
\\
\quad C \frac{d V_{\text {in }}}{d t} \approx \frac{V}{\bar{R}}
\end{array}\right\} \quad V(t) \approx R C \frac{d}{d t} V_{\text {in }}(t)
$$

RC integrator

$$
\begin{aligned}
& \text { R } \\
& V_{\text {in }}(t)
\end{aligned}
$$

$$
\begin{aligned}
& I=C \frac{d V}{d t}=\frac{V_{i n}-V}{R} \\
& \text { for large } \left.\mathrm{RC}\left(\mathrm{~V} \ll \mathrm{~V}_{\text {in }}\right)\right\} V(t)=\frac{1}{R C} \int^{t} V_{\text {in }}(t) d t+\mathrm{const} \\
& C \frac{d V}{d t} \approx \frac{V_{i n}}{R}
\end{aligned}
$$

so what?

filtering of signals

unintentional capacitive coupling see from waveform shape

more later

ac resistive circuits

nothing earth-shattering happens
except P is lower than you expect

ac capacitive circuits

(a)

I andV 90° out of phase average power is ZERO
frequency response? insulating at dc conducting at high f
voltage "lags" current

$$
Z=\frac{1}{i w C}=\frac{-1}{2 \pi i f C}
$$

filters

familiar?

low-pass filter
frequency domain
time domain
integrator
$V(t)=\frac{1}{R C} \int^{t} V_{i n}(t) d t+\mathrm{const} \quad V(t) \approx R C \frac{d}{d t} V_{i n}(t)$
high-pass

low-pass

audio crossovers

parallel

$\mathrm{dB} /$ decade ...

