Transistors, so far

Rules

I. $\mathrm{V}_{\mathrm{c}}>\mathrm{V}_{\mathrm{e}}$
2. b-e and b-e circuits \sim diodes
3. max values of $\mathrm{I}_{\mathrm{c}}, \mathrm{I}_{\mathrm{b}}, \mathrm{V}_{\mathrm{ce}}$ 4. if rules are obeyed,

$$
\mathrm{I}_{\mathrm{c}}=\beta \mathrm{I}_{\mathrm{b}}
$$

$\beta \sim 100$, but variable

conservation of current:

$$
\mathrm{I}_{e}=\mathrm{I}_{\mathrm{c}}+\mathrm{I}_{\mathrm{b}}=\beta \mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{b}}=(1+\beta) \mathrm{I}_{\mathrm{b}} \approx \beta \mathrm{I}_{\mathrm{b}}
$$

Simple view

$$
\begin{aligned}
\mathrm{I}_{e} & =(1+\beta) \mathrm{I}_{\mathrm{b}} \\
\mathrm{~V}_{\mathrm{b}} & =\mathrm{V}_{e}+0.6
\end{aligned}
$$

Current Source

I) pick load current
2) pick emitter resistor and bias
3) set up base V divider

want ImA, pick 5V over 5k (keep power ~mW) make $\mathrm{V}_{\mathrm{e}} \sim$ IV for stability sets base at 5.6 V

12 k
given IOV supply, split to 5.6 V to ignore base current/load ... resistance into base $\sim \beta R_{e}$ divider R's smaller
caveats:
want divider 'stiff' c.f. βR_{e} so $\mathrm{V}_{\mathrm{b}} \sim$ constant can't push V_{e} below ground require $\mathrm{V}_{\mathrm{e}}<\mathrm{V}_{\mathrm{c}}$
limits voltage drop across load to a bit under $V_{\text {supply }}$ still: very good \& stable I source, simple

programmable: add a signal at the base ...

Signals: voltage \& current varying in time
sine
ramp
pulse noise
resistor doesn't care
capacitor follows I = C dV/dt
e.g., differentiator / integrator circuits really analog signal processing
feed resistor a sine wave it doesn't care

feed capacitor a sine wave ... current is cosine! $\sim \mathrm{dV} / \mathrm{dt}$ charging/discharging power goes in \& out
(b)

diodes are even funnier current in I direction
wires do not touch here

look back at I source ... but feed it with a sine wave

just use C to block any constant voltages (only time-varying gets through)

static analysis:

ImA through 6k load base at 1.6 V
what happens for small change in base voltage?

! wiggle input, output wiggles R_{c} / R_{e} times larger (but inverted)
'common emitter amplifier', voltage gain of $G=-R_{c} / R_{e}$

Some generic transistor circuits

follower
$\mathrm{V}_{\text {in }} \sim \mathrm{V}_{\text {out }}$
raises I
lowers output R

I source
fixing V_{b} fixes V_{e} fixing V_{e} fixes I_{e} fixing l_{e} fixes I_{c}
switch
$\mathrm{V}_{\mathrm{b}}>\mathrm{V}_{\mathrm{e}}$, valve opens allows I to flow from supply to c

amplifier input fixes V_{e} V_{e} fixes I_{c} out/in $\sim R_{e} / R_{b}$

the comparator

- two inputs: $\mathrm{V}_{+}, \mathrm{V}$.
- one output: V_{\circ}
- if $\mathrm{V}_{+}>\mathrm{V}_{\text {-, }}$ output is open
- if $\mathrm{V}_{+}<\mathrm{V}_{\text {- }}$, output is negative

inputs	output
$\mathrm{V}_{-}>\mathrm{V}_{+}$	negative
$\mathrm{V}_{+}>\mathrm{V}_{-}$	floating

which input is larger?
$-V_{\text {supply }}$

realization \& abstraction

ideal comparator: inputs draw no current
typical comparator (e.g., LM3II)

come in double \& quad packages (L339)
what to do with them?

divider ensures $\mathrm{V}_{+}=\mathrm{V}_{\mathrm{cc}} / 2$ (threshold) negative input: $\mathrm{V}_{-}=\mathrm{V}_{\text {in }}$
if $\mathrm{V}_{\text {in }}<\mathrm{V}_{\mathrm{cc}} / 2$, output is at negative supply (GND) if $\mathrm{V}_{\text {in }}>\mathrm{V}_{\mathrm{cc}} / 2$, output floating (pulled up by 10 k to V_{cc})

V- could just be a switch/photoR/transducer connected to V_{cc} ! disadvantage: sharp threshold gives 'bouncing' near transition. need some hysteresis ...

zero crossing detector

if $\mathrm{V}_{\text {in }}>0$, output is floating but 20k to supply 'pulls up’
if $\mathrm{V}_{\text {in }}<0$, output is at $-\mathrm{V}_{\text {supply }}$ but also pulled up
ground neg supply, 0/I sig

some uses for comparators

- switching/amp (drive base of transistor)
- A/D conversion \& interfacing
- pulse width modulation
- threshold/level detection
- use of feedback allows much more
- memory (flip-flop, last state?)
- hysteresis - better regulation (thermostat)
- oscillators (intermittent wipers)

relaxation oscillator

WTF?

use Charge as comparator input
compare to fixed ref
output feeds back to RC

$\mathrm{V}+$ is fixed by voltage divider at $\mathrm{V}_{\mathrm{o}} / 2=(+/-) \mathrm{V}_{\mathrm{cc}} / 2$ since inputs draw no current, R and C currents same

$$
C \frac{d V_{-}}{d t}=\frac{V_{o}-V_{-}}{R} \quad \frac{d V_{-}}{d t}+\frac{V_{-}}{R C}=\frac{V_{o}}{R C}
$$

$$
\frac{d V_{-}}{d t}+\frac{V_{-}}{R C}=\frac{V_{o}}{R C}
$$

general solution:

$$
V_{-}=A+B e^{-t / R C}=V_{o}+B e^{-t / R C}
$$

(steady state, $\mathrm{V}_{-}=\mathrm{V}_{\circ}$)
$\mathrm{V}+$ is fixed at $\mathrm{V}_{\mathrm{cc}} / 2$; when $\mathrm{V} .<\mathrm{V}_{\mathrm{cc}} / 2$ output goes to $-\mathrm{V}_{\mathrm{cc}}$ this discharges C toward $-\mathrm{V}_{\mathrm{cc}}$ and makes $\mathrm{V}+=-\mathrm{V}_{\mathrm{cc}} / 2$
when V - reaches $-V_{c c} / 2$:
$\mathrm{V}_{-}<\mathrm{V}_{+}$and output goes high (pull-up); this charges C
once V - reaches $\mathrm{V}_{\mathrm{cc}} / 2$
$\mathrm{V}_{+}<\mathrm{V}^{\text {- so }}$ so output goes low, discharging C ... starts over

C cycles between $-\mathrm{V}_{\mathrm{cc}} / 2$ and $\mathrm{V}_{\mathrm{cc}} / 2$ this is a half period we know capacitor $\mathrm{V}(\mathrm{t})$!
at $\mathrm{t}=0, \mathrm{~V}-=-\mathrm{V}_{\mathrm{cc}} / 2$
$\mathrm{V}_{-}=\mathrm{V}_{\mathrm{cc}}-\frac{3}{2} \mathrm{~V}_{\mathrm{cc}} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
time for V - $=+V_{c c} / 2$
is half period (T/2)

$$
\frac{\mathrm{V}_{\mathrm{cc}}}{2}=\mathrm{V}_{\mathrm{cc}}\left(1-\frac{3}{2} e^{-(\mathrm{T} / 2) / \mathrm{RC}}\right)
$$

$$
\mathrm{T}=2 \mathrm{RC} \ln 3
$$

the lab

- build a relaxation oscillator to drive an LED or speaker
- LED: $<40 \mathrm{~Hz}$ or so to see
- speaker: $\sim 100 \mathrm{~Hz}-10 \mathrm{kHz}$ to hear
- make Arduino count every Nth cycle

