
PH585: Magnetic dipoles and so forth





1 Magnetic Moments

Magnetic moments ~µ are analogous to dipole moments ~p in electrostatics. There are two sorts of magnetic
dipoles we will consider: a dipole consisting of two magnetic charges p separated by a distance d (a true
dipole), and a current loop of area A (an approximate dipole).
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Figure 1: (left) A magnetic dipole, consisting of two magnetic charges p separated by a distance d. The dipole moment is |~µ|=pd.
(right) An approximate magnetic dipole, consisting of a loop with current I and area A. The dipole moment is |~µ|=IA.

In the case of two separated magnetic charges, the dipole moment is trivially calculated by comparison
with an electric dipole – substitute ~µ for ~p and p for q.i In the case of the current loop, a bit more work is
required to find the moment. We will come to this shortly, for now we just quote the result ~µ=IA n̂, where
n̂ is a unit vector normal to the surface of the loop.

2 An Electrostatics Refresher

In order to appreciate the magnetic dipole, we should remind ourselves first how one arrives at the field for
an electric dipole. Recall Maxwell’s first equation (in the absence of polarization density):

~∇ · ~E =
ρ

εrε0
(1)

If we assume that the fields are static, we can also write:

~∇× ~E = −∂~B
∂t

(2)

This means, as you discovered in your last homework, that ~E can be written as the gradient of a scalar
function ϕ, the electric potential:

~E = −~∇ϕ (3)

This lets us rewrite Eq. 1 in terms of the Laplacian of the potential – in other words, the electric potential
satisfies Poisson’s equation:

iIt is unfortunate that the electric dipole strength and magnetic charge both use the same letter p. We will try to make
which is which clear by context.



~∇ · ~E = −∇ · ∇ϕ = −∇2ϕ =
ρ

ε0
(4)

The general solution for this potential can be readily found:

ϕ(~r) =
1

4πε0

∫
ρ(~r ′)
|~r−~r ′|

d3r′ (5)

The solution is based on the fact that

∇2

(
1

|~r−~r ′|

)
= −4πδ (~r−~r ′) (6)

which makes |~r −~r ′|−1 an elementary example of a Green’s function. You can read all about this in, for
example, Classical Electrodynamics by Jackson.

We may need to augment the solution above with, e.g., a function Ψ to satisfy the boundary conditions,
and we can do this so long as ∇2Ψ = 0. This requirement essentially states that we can’t add anything to
our potential that would imply additional charge density. A sensible requirement, right?

Now we can solve Poisson’s equation for a given charge distribution, find the (scalar) electric potential
everywhere, and use ~E=−∇ϕ to find the electric field everywhere. For the task at hand – finding the field
due to an electric dipole – this is overkill. We will just calculate the potential directly in this case.

2.1 Electric Dipoles

Figure 2 shows the dipole we wish to study, two charges q separated by d. We will choose the origin O to be
precisely between the two charges, along the line connecting the charges, and we wish to calculate the field
at an arbitrary point P(x, y, z)=P(r) far from the dipole (r�d).ii.
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Figure 2: An electric dipole consisting of two charges q
separated by d. The origin O is chosen between the two
charges, and we wish to calculate the field at an arbitrary
point P(x, y, z)=P(r) far from the dipole (r�d).

We can readily write down the potential at the point P – it is just a superposition of the potential due
to each of the charges alone:

iiIt is not much harder to solve without assuming r�d, but we don’t really need the solution close to the dipole.



ϕ(x, y, z) =
1

4πε0

 q√(
z − d

2

)2
+ x2 + y2

+
−q√(

z + d
2

)2
+ x2 + y2

 (7)

Since we are assuming r�d, we can simplify this a bit by noting that (z−d/2)2≈z2−zd using a binomial
expansion. This simplifies the denominator quite a bit:

1√(
z − d

2

)2
+ x2 + y2

≈ 1√
z2 − zd + x2 + y2

=
1√

r2 − zd
=

1

r
√

1− zd
r2

≈ 1
r

(
1 +

zd

2r2

)
(8)

Here we used the binomial expansion once again. We can do this for both terms in the potential, and
arrive at a fairly simple form for ϕ:

ϕ(r) =
1

4πε0

z

r3
qd (9)

Now we define the electric dipole as ~p=qd ẑ =q~d, where ~d is just a vector going from one charge to the
other. We also note that z/r is nothing more than cos θ, where θ is the angle between the vector ~r pointing
to P and the y axis. With this in hand,

ϕ(r) =
1

4πε0

|~p| cos θ

r2
(10)

Finally, |~p| cos θ is nothing more than a dot product of ~p and the radial unit vector r̂ ...

ϕ(r) =
1

4πε0

~p · r̂
r2

=
1

4πε0

~p ·~r
r3

(11)

This is the usual expression for the potential relatively far from an electric dipole. How do we find the
field? We just use ~E=−∇ϕ and grind through the math ...

Ex =
|~p|

4πε0

3zx

r5
x̂ (12)

Ey =
|~p|

4πε0

3zy

r5
ŷ (13)

Ez =
|~p|

4πε0

(
1
r3
− 3z2

r5

)
ẑ (14)

With a bit more tedium, we would discover an ostensibly more elegant formula for ~E:

~E =
3 (~p · r̂) r̂− ~p

4πε0r3
(15)



You can find form this by directly taking the gradient of Eq. 11, if you remember a few arcane vector
identities. What we will discover shortly is that the solution for a magnetic dipole is exactly the same,
provided we make the substitutions

~p→
~µ

c2
(16)

We know already that we pick up a factor c2 scaling the magnetic dipole moment because the magnetic
field is just the electric field viewed from another reference frame. Remembering that µ0ε0 = c−2, you have
the magnetic dipole formula:

~B =
µ0

4π

3 (~µ · r̂) r̂−~µ

r3
(17)

We will derive this shortly to make sure our substitution is correct.

Just as an aside, instead of resolving the components of ~E along the x and y axes, we could just as easily
resolve them along the direction parallel and perpendicular to the dipole axis:

E|| =
|~p|

4πε0

3z

r5

√
x2 + y2 ẑ (18)

E⊥ =
|~p|

4πε0

3 cos θ sin θ

r3
x̂ (19)

(20)

3 Magnetic Fields from Currents

How do we verify our solution of the magnetic dipole? Are we sure that a current loop really looks like a
dipole? We can figure out both questions pretty quickly, once we remember how to get magnetic fields from
currents. In electrostatics, we start with the scalar potential of the charge distribution, and then get ~E. In
magnetostaticsiii, we start with the vector potential and then get ~B.

Probably you are not used to doing this – it is not done in a lot of E&M courses in favor of the Biot-Savart
law or some such thing, and using the vector potential is just hard sometimes. This is unfortunate, but easily
correctable. We like the vector potential, since in magnetostatics it is neatly related to the current density
distribution just as in electrostatics the scalar potential is related to the charge distribution.

To start with, take Maxwell’s equation for the curl of ~B, assuming that ~E does not vary with time:

~∇× ~B =
~j

ε0c2
(21)

Notice again that when we compare the corresponding ~E and ~B equations, we pick up a factor c2 from the
Lorentz contraction. We can roughly substitute in the following way in the static case to get from electric

iiiStatic in the sense that ~B and ~M are not changing, but obviously we need moving charges for there to be a current.



to magnetic formulas:

~E→ ~B ρ →
~j
c2

(22)

· → × × → · (23)

Don’t read too much into this. The only point is that charge density and current density are analogous,
cross products for one are dot products for the other, and Lorentz transforming from one field to the other
picks up a factor c2.

That aside: our vector potential is defined by ~B= ~∇× ~A. Substituting this into Eq. 21 ...

~∇×
(

~∇× ~A
)

=
~j

ε0c2
= ~∇

(
~∇ · ~A

)
−∇2~A (24)

Here we used the identity for ~∇×
(

~∇× ~F
)

without telling you first. This looks formidable, but remember

that with ~A we have a gauge choiceiv– we can add the divergence of any other field to ~A and not affect
the resulting field ~B, since the curl of the divergence of any function is identically zero. Put more simply,
we have to pick specifically what we want ~∇ · ~A to be for our solution to be unique, since all choices are
perfectly valid. Based on what we have above, the most convenient choice is just to choose ~∇ · ~A=0. We
always take the easy way out when we can! This is known as the Coulomb gauge, and it is particularly
convenient because it decouples the equations for the scalar and vector potentials.

Within the ‘Coulomb gauge,’ our equation becomes, on its face, nice and simple:

∇2~A =
−~j
ε0c2

= −µ0
~j (25)

We now have a Poisson’s equation relating magnetic vector potential and current density, just like the one
we have relating electric scalar potential and charge density. The same equations have the same solutions,
so we can immediately write down a general (magnetostatic) solution for ~A:

~A(r) =
1

4πε0c2

∫ ~j(~r ′)
|~r−~r ′|

d3r′ =
µ0

4π

∫ ~j(~r ′)
|~r−~r ′|

d3r′ (26)

We get electric potential by integrating the charge density over all space, whereas the magnetic potential
comes from integrating the current over all space. The main difference is that current density is a vector,
while charge density is a scalar.

3.1 A Long, Straight Wire

Now let’s consider the magnetic vector potential from a long current-carrying wire, a segment of which is
shown in Fig. 3. The wire of cross-section 2a carries a current I in the z direction. Cylindrical coordinates

ivChoosing a gauge is just a mathematical procedure for coping with redundant degrees of freedom, in this case, coping with
the non-uniqueness of ~A by just choosing what the divergence of ~A should be.



will be natural in this case. First, of all we cannot make the wire infinitely long, since that would make ~A
infinite. We will consider wire of length 2l, made up of two segments of length l.

I

z

r

a

P

l

l

z

r
(0,0,0)

Figure 3: A segment of a long, straight wire of length 2l
carrying a current I. The current flows in the z direction.

The two segments of wire are joined in the z =0 plane, as is our point P, and we will make the point P
at a distance r our origin as well. Our task is to find the vector potential at point P, a distance r from the
midpoint of the two segments, as shown in Fig. 3. In the end, we can impose the condition l� r, which is
practically as good as making the wire infinitely long.

Since the current is only in the z direction, by symmetry the vector potential only has a z component –
Ax and Ay must be zero since jx and jy are zero. Let us only worry about the potential from the upper
segment of wire first, and we can add in that of the lower segment by superposition once we are finished
– clearly, they will give the same contribution. The distance from the point P to any point on the upper
segment of wire is just

√
r2 + z2, so already we can write down the integral for Az due to the upper half

wire:

~A =
∫ l

0

1
4πε0c2

jz ẑ√
r2 + z2

dz (27)

You can look this integral up in any halfway decent table.v

~A =
jz ẑ

4πε0c2
ln

∣∣∣z +
√

r2 + z2
∣∣∣∣∣∣∣∣

l

0

=
jz ẑ

4πε0c2

[
ln

∣∣∣l +
√

r2 + l2
∣∣∣− ln

∣∣∣r∣∣∣] =
jz ẑ

4πε0c2
ln

∣∣∣ l +
√

r2 + l2

r

∣∣∣ (28)

This is the vector potential from the upper half wire. The vector potential from the lower half wire can
be found in the same way, excepting that we integrate from −l to 0, which gives us exactly the same result
as above. No surprise, the potential due to the whole wire is just double that from half a wire! Now, if we
assume that l�r, we can approximate

√
r2 + l2∼ l, and make things a bit simpler:

~A ≈ jz ẑ
2πε0c2

ln
∣∣∣2l

r

∣∣∣= jz ẑ
2πε0c2

(ln 2l − ln r) (29)

No problem. Now, since the field ~B is given by the curl of ~A, we have another sort of freedom in finding
vOr, substitute z=r tan θ and just grind through it. It isn’t so bad.



~A, viz., we can add any constant or constant vector we like to ~A and get the same ~B.vi Our gauge choice
just requires that ~∇ · ~A = 0, remember, so adding a constant vector is completely within our freedom. In
that case, we choose to add precisely −jz ẑ

4πε0c2 ln 2l to our existing ~A, which gives us a nice neat form for the
vector potential:

~A = − jz

2πε0c2
ln r ẑ = − I

2πε0c2
ln r ẑ = −µ0I

2π
ln r ẑ l � r (30)

Here we also made use of the fact that jz = I
πa2 . How about the field ~B? No problem, we just have to

take some derivatives, since ~∇× ~A=~B. This is the nice thing about finding fields from potentials – usually
finding the potential is fairly straightforward, and getting the field from that is just differentiation. Overall,
we save on the number of integrals. Anyway: since ~A has only a ẑ component, and that depends only on r,
its curl is particularly simple even in cylindrical coordinates:

~B = ~∇× ~A = −∂Az

∂r
ϕ̂ =

µ0I

2π

∂

∂r
(ln r) ϕ̂ =

µ0I

2πr
ϕ̂ (31)

After all that, it is reassuring that we recover the usual form for the field surrounding a current-carrying
wire. We could have found this trivially with, e.g., Ampere’s law, but the point is to become a bit more
comfortable with the vector potential, as it will make our discussion of dipoles considerably more straight-
forward.

3.1.1 Electrostatic Analogy

The electrostatic analogy to this problem is just finding the field around an infinite charged cylinder (with
linear charge density λ. You have probably already solved this problem, most likely with Gauss’ law for ~E
and then finding ϕ, and know the answer to be:

ϕ = − λ

2πε0
ln r (32)

It is curious to compare this to the vector potential we found above. If we make the substitutions

λ → πa2jz

c2
=

I

c2
(33)

ϕ → ~A (34)

and add the appropriate unit vector to ~A, they are the same. This shouldn’t be surprising – a current
carrying wire is a charged rod from the point of view of a test charge moving alongside the wire. This is
how we derived the magnetic field from the electric field, and we should not be terribly surprised that charge
density just becomes current, picking up a factor c2 from the Lorentz transformation. This trick will work
pretty generally for magnetostatics, because after all, the same equations have the same solutions. Our task
in many cases is just to find the right electrostatics problem we’ve already solved, and make the appropriate
substitutions.

viJust like with the electric potential, we can choose zero potential anywhere we like.



3.2 A current loop

We need to solve one more problem before we get into real magnetic phenomena, that of a small current
loop. Figure 4 show the geometry for the small current loop we will consider. We place the current loop of
radius a carrying current I at the origin, and using cylindrical coordinates, we will find the vector potential
at a point P(R,ϕ, z). From there, it will be a simple matter to find the field ~B.

P(x,y,z)

dl’φ’

r

R

z

dφ’
dl

a

θ

φ

Figure 4: Geometry for our current loop.

3.2.1 Vector Potential

First, consider a small element of the loop d~l
′
, at coordinates ~P

′
= (a, ϕ′, 0). The primed coordinates will

refer to the tiny element. The vector from d~l
′
to P we will just call ~r. The vector defining the small element

d~l
′
itself can be most simply written:

d~l
′
= a dϕ′ (− sinϕ′ ı̂ + cos ϕ′ ̂) = a dϕ′ ϕ̂ (35)

which you should be able to verify easily. This is just the gradient of the position on the circle of radius
a, since we want d~l

′
to lie along the tangential direction. The vector potential at P is now just an integral

over all d~l
′
around the loop, noting that since the current density is constant~j dV =I d~l

′
:

~A(~P) =
µ0

4π

∫
V

~j(~P
′
)

|~P− ~P
′
|
dV (36)

=
µ0I

4π

∮
d~l
′

|~r|
(37)

Already we can see that the vector potential from each element of the ring is in the direction of the
current, so the overall vector potential will have only a ϕ component. Of course, just from the symmetry of
the problem, this is also clear. Using the fact that ϕ̂=− sinϕ ı̂ + cos ϕ ̂, we can write the ϕ component of
the vector potential:



Aϕ = ~A · ϕ̂ (38)

= ϕ̂ · µ0I

4π

∮
d~l
′

|~r|
(39)

=
µ0I

4π

∮
ϕ̂ · d~l

′

|~r|
(40)

Finding ϕ · d~l
′
is straightforward, if we remember a handy identity for cos (a + b)

ϕ̂ · d~l
′
= a dϕ′ (sinϕ sinϕ′ + cos ϕ cos ϕ′) (41)

= a d~l
′
cos (ϕ− ϕ ′) (42)

Things brings us finally to something that seems manageable enough:

Aϕ =
µ0

4π

∫
a cos (ϕ− ϕ ′) dϕ′

|~r|
(43)

|~r| =
√

(R cos ϕ− a cos ϕ′)2 + (R sinϕ− a sinϕ′)2 + z2 (44)

There is no reason to use the angle ϕ any more, we can just set it to zero, which simplifies ~r a bit:

|~r| =
√

(R− a cos ϕ′) + (a sinϕ′) + z2 (45)

=
√

R2 + 2aR cos ϕ′ + a2 cos2 ϕ′ + a2 sin2 ϕ′ + z2 (46)

=
√

R2 + a2 + z2 − 2aR cos ϕ′ (47)

This is nice, but it just leads to an annoying elliptical integral:

Aϕ =
µ0I

4π

∫
a cos ϕ′ dϕ′√

R2 + a2 + z2 − 2aR cos ϕ′
(48)

One can look them up in tables, or use any number of numerical analysis packages (e.g., Mathematica),
but this is useless for our purposes. From now on, we will assume the current loop is far away, such that
R2+z2�a2. In this case, we can approximate a bit:

√
R2 + a2 + z2 − 2aR cos ϕ′ =

1√
R2 + a2 + z2

1√
1− 2aR cos ϕ′

R2+a2+z2

(49)

≈ 1√
R2 + a2 + z2

(
1 +

aR cos ϕ′

R2 + a2 + z2

)
(50)

Now we have something a bit more manageable:



Aϕ =
µ0I

4π

∫ 2π

0

a cos ϕ′√
R2 + a2 + z2

(
1 +

aR cos ϕ′

R2 + a2 + z2

)
dϕ′ (51)

Now note the following two facts:

∫ 2π

0

cos ϕ′ dϕ′ = 0 and
∫ 2π

0

cos2 ϕ′ dϕ′ = π (52)

Pull everything not depending on ϕ′ out of the integral, and we are nearly done:

Aϕ =
µ0I

4π

a2R

(R2 + a2 + z2)
3
2
· π (53)

=
µ0Ia2R

4 (R2 + a2 + z2)
3
2

(54)

At this point, it is easier to switch to spherical polar coordinates. Keeping in mind that we are far away
from the loop, so we will make the approximation

√
R2 + a2 + z2 ≈

√
R2 + z2, and thus r2 = R2 +z2 and

sin θ=R/
√

R2+z2. This gives Aϕ a nicer form:

Aϕ =
µ0I

4
a2R√

R2 + z2 (R2 + z2)
=

µ0Ia2 sin θ

4r2
R2 + z2 � a2 (55)

Now we will define a magnetic dipole moment in terms of the current carried by the loop and its area,
|~µ|=IA=πa2I. The direction of the magnetic dipole moment points normal to the area of the loop, ~µ=IA n̂.

Aϕ =
µ0Ia2 sin θ

4r2
=

µ0

4π

|~µ| sin θ

r2
(56)

This just begs to be rewritten as a cross-product! In fact, there is little reason we can’t write it as one.
All that matters is that the relative orientation of d~l

′
and the radius vector ~r to the point P where we

want to find the potential and field. You can check that this is correct if you think about the appropriate
directions:vii

~A =
µ0

4π

~µ× r̂
r2

(57)

Lo and behold, this is just like the formula for the potential from an electric dipole, if we use our
substitutions ~p → ~µ/c2 and · → ×. Our current loop is the magnetic equivalent of an electric dipole, a
magnetic dipole.

viiWhile you’re at it, you can derive the Biot-Savart law by thinking just about the current element itself. Purcell and
Feynman do this well.



3.2.2 The Field

Since ~A has only a ϕ̂ component, finding ~B from ~B= ~∇ × ~A is simple. First, the r component (we are in
spherical coordinates now, remember):

Br =
1

r2 sin θ

∂

∂θ
(r sin θAϕ) (58)

=
1

r2 sin θ

(
∂

∂θ
r sin θ

µ0

4π

|~µ| sin θ

r2

)
(59)

=
µ0|~µ|

4πr3 sin θ

(
∂

∂θ
sin2 θ

)
(60)

=
µ0|~µ|

4πr3 sin θ
(2 sin θ cos θ) (61)

=
µ0|~µ| cos θ

2πr3
(62)

Clearly, Bϕ =0, but we don’t get off quite so easily with Bθ:

Bθ = −1
r

∂

∂r
(rAϕ) (63)

= −1
r

(
∂

∂r
r
µ0

4π

|~µ| sin θ

r2

)
(64)

= −µ0|~µ| sin θ

4πr

(
∂

∂r

1
r

)
(65)

=
µ0|~µ| sin θ

4πr3
(66)

If we had started from Eq. 57 and taken the curl directly, we could arrive at an ostensibly more convenient
form for ~B, the ‘elegant’ one that is usually quoted without proof:

~B = ~∇× ~A (67)

= ~∇×
[

µ0

4π

~µ× r̂
r2

]
(68)

=
µ0

4π
~∇×

[(
1
r2

)
~µ× r̂

]
(69)

=
µ0

4πr2
~∇× (~µ× r̂) +

µ0

4π

[
~∇ 1

r2

]
× (~µ× r̂) (70)

=
µ0

4πr2

[
~µ

(
~∇ · r̂

)
− r̂

(
~∇ ·~µ

)
+

(
r̂ · ~∇

)
~µ−

(
~µ · ~∇

)
r̂
]
− µ0

4πr3
r̂× (~µ× r̂) (71)

This is still fairly messy, until we realize that both the gradient and divergence of ~µ are zero – ~µ is just a
constant vector. We can also use the identities

[
~a · ~∇

]
r̂= 1

r [~a− r̂ (~a · r̂)], ~∇ · r̂= 2
r and then it gets better:



~B =
µ0

4πr2

[
2~µ
r
− 0 + 0− 1

r
[~µ− r̂ (~µ · r̂)]

]
− µ0

4π

[
2
r3

[(r̂ · r̂)~µ− (r̂ ·~µ) r̂]
]

(72)

=
µ0

4π

[
2~µ−~µ + r̂ (~µ · r̂)

r3

]
− µ0

4π

[
2~µ− 2r̂ (r̂ ·~µ)

r3

]
(73)

=
µ0

4π

3r̂ (~µ · r̂)−~µ

r3
(74)

If you are dubious of the enormous string of vector identities we have just employed, rest easy. We can
easily verify that it is correct, and gives the same answer we already had:

~B =
µ0

4π

3 (~µ · r̂) r̂−~µ

r3
(75)

Br = ~B · r̂ =
µ0

4π

3|~µ| cos θ − |~µ| cos θ

r3
=

µ0|~µ| cos θ

2πr3
(76)

Bθ = ~B · θ̂ =
µ0

4π

0 + |~µ| sin θ

r3
=

µ0|~µ| sin θ

4πr3
(77)

Now we have the magnetic field of a current loop or magnetic dipole, at least fairly far from the dipole.
Again, we have verified that we could have just used the solution to the analogous electric case, along with
the appropriate substitutions. This is the tactic we employed during lecture, using a square current loop
and comparing it to a set of charged rods.viii

3.3 Two Magnetic Charges

Now, what about two magnetic charges configured as a dipole? There is no need to solve this problem again,
the solution is just like that for the electric dipole in Sect. 2.1. As we discovered in the previous lecture, if
we assume the fields do not vary in time, we can use a scalar magnetic potential, and the solution really is
identical.

3.4 Current Loops vs. Magnetic Charges

Comparing the magnetic dipole moment found for two magnetic charges to that found for a current loop
gives us some insight into the many different units encountered in magnetism – there is essentially an entire
system of units based on each approach.

First, for a magnetic dipole made up of two magnetic charges ±p, such that ~µ = p~d, the amount of
magnetic charge is measured in Webers [Wb], so |~µ| must be Wb·m. Total magnetization is just the number
of magnetic moments per unit volume, so magnetization is Wb/m2, which is defined to be one Tesla. Within
this approach, one usually writes ~B=µ0

~H+ ~M, so both B and M have units of Tesla.
For a current loop, on the other hand, ~µ= I~A= IAn̂, so the dipole moment must be measured in A·m2,

and the moment per unit volume, the magnetization, must be in A/m. In this approach, it is customary to
say ~B=µ0(~H+ ~M), so H and M have units of A/m, while B is in Tesla.

So this is why we have the complete and utter mess that we do in magnetism. This is why we use A/m
and Tesla, and sometimes mix the two together. From all of this we can see that pd=µ0IA, which means
viiiThe treatment we followed in class – handwaving at times, but essentially correct – is like that in vol. II of the Feynman

Lectures.



that 1A/m→4π× 10−7 T, or 1 kA/m→4π× 10−4 T. We attempt to summarize this mess in the table below.
MAKE TABLE

4 Force and Energy for Dipoles in a Field

Now, let us take one of our current loops and put it in a constant magnetic field. We will say our current
loop carries a current I, and has area A (so |~µ|= IAn̂, where n̂ is perpendicular to the loop surface), while
the magnetic field is along the z direction, ~B=B ẑ. The dipole moment of the current loop and the magnetic
field make an angle θ.
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Figure 5: Square current loop in a magnetic field.

Just like an electric dipole, the presence of a magnetic field induces a torque on the magnetic dipole.
This should already be familiar. In the electric case, the torque is ~τ =~p × ~E, and for the magnetic dipole,
~τ =~µ× ~B.

The presence of a torque implies a change in potential energy. If the torque τ rotates the current loop
through an angle dθ, we can write the potential energy due to that rotation as

dU = −τdθ = −|~µ|B sin θ dθ (78)

Or, integrating over the total angular displacement, we can write the change in potential energy rotating
through an angle θ as:ix

∆U = −~µ · ~B (79)

Again, this is just like the electric dipole in an electric field.

5 Orbital Magnetism

Now, instead of a square current loop, imagine we have a single charge q orbiting a nucleus – a Bohr atom.
The charge q has a constant speed v in its orbit, which means that the “current” corresponding to this single
charge is just the amount of charge q divided by how long it takes to orbit the nucleus:

ixWe pick up an arbitrary constant through integration, which we set to zero since we are only interested in changes in
potential energy



I =
∆Q

∆t
=

q

2πr/v
=

qv

2πr
(80)

The area of the “current loop” defined by the orbit is just πr2, so the effective magnetic dipole moment
is

|~µ| = πr2I =
1
2
qvr or ~µ =

1
2
qvr ẑ (81)

The charge q also has an angular momentum J due to its orbit, which is just J = mvr. Since ~J and ~µ

must be parallel – they are both perpendicular to the surface defined by the orbit, and parallel to ẑ – we
can just as easily write µ in terms of ~J:

~µ =
q

2m
~Jorbit (82)

Curiously enough, this depends on neither v or r, just the charge/mass ratio q/m.x For an orbiting
electron, the q =−e, so the magnetic dipole moment of orbiting electrons is negative. Often, one sees this
written in terms of the ‘g-factor’:

~µ = − ge

2m
~J (83)

Where g=1 for orbiting electrons, while g=2 for a pure spin moment, which we will come to in subsequent
lectures.

6 Diamagnetism

What happens if we put our Bohr atom in an increasing magnetic field? Say we increase the field slowly
from 0 to B in some amount of time t. Now we have a closed current loop with a time-varying magnetic
field ... by Faraday’s law, we must also have an electric field generated around the orbit! We integrate ~E · d~l
around the orbit, and the flux over the surface defined by the orbit:

∮
orbit

~E · d~l = − ∂

∂t

∫
S

~B · d~A (84)

2πrE = − ∂

∂t

(
Bπr2

)
(85)

E = −1
2
r
∂B

∂t
(86)

The time-varying B through the surface of the orbit gives rise to a circulating E field. This E field in
turn acts on the single charge in the orbit. Since the charge is in uniform circular motion, the circulating

xA more rigorous quantum mechanical treatment gives basically the same answer. In this case, we are correct for the wrong
reasons, but it is still worth proceeding.



electric field produces a torque:

|~τ | = |~r× ~F| (87)

= |~r× q~E| (88)

=
1
2
qr2 ∂B

∂t
(89)

Now, if there is a torque present, we know that the torque must be equal to the time rate of change of
the angular momentum.

τ =
1
2
qr2 ∂B

∂t
=

dJ

dt
(90)

We can integrate this from 0 to B and 0 to t, and find the change in angular momentum due to the
presence of the ramped B field. Since we can write magnetic moment in terms of angular momentum, this
also gives us a change in magnetic moment:

∆J =
1
2
qr2B (91)

∆µ = − q

2m
∆J = −q2r2

4m
B (92)

Notice the minus sign – from Lenz’s law – which means that the magnetic moment induced by the field
B is opposite the applied field. Furthermore, the magnitude of the induced moment is proportional to the
applied field. These are the classic signatures of diamagnetism, the first type of solid magnetism we will
encounter.

The equation above misses a factor 2
3 , since we really only treated the problem two dimensionally. We

will get to that in the next lecture.
More troubling, we got the ‘right’ answer for completely the wrong reasons, by ignoring quantum mechan-

ics and treating the fictitious Bohr atom. Still, the approach above gives a useful insight to diamagnetism,
and it is very nearly ‘correct’ for the most extreme example of diamagnetism, superconductivity.


