Quiz 1: Electric fields and so forth

Things:

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{12} & =k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}=q_{2} \overrightarrow{\mathbf{E}}_{1} \\
\overrightarrow{\mathbf{E}}_{1} & =\overrightarrow{\mathbf{F}}_{12} / q_{2}=k_{e} \frac{q_{1}}{r^{2}} \hat{\mathbf{r}} \\
\overrightarrow{\mathbf{E}} & =k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{\mathbf{r}}_{i} \rightarrow k_{e} \int \frac{d q}{r^{2}} \hat{\mathbf{r}}=k_{e} \int \frac{\rho \hat{\mathbf{r}}}{r^{2}} d V_{o l}
\end{aligned}
$$

1. Two thin rigid rods lie along the x axis, as shown below. Both rods are uniformly charged. Rod 1 has a length L_{1} and a charge per unit length λ_{1}. Rod 2 has a length L_{2} and a charge per unit length λ_{2}. The distance between the right end of rod 1 and the left end of $\operatorname{rod} 2$ is L.

Which expression below could give the electric force between the two rods? Circle your answer.

$$
\begin{align*}
& \overrightarrow{\mathbf{F}}_{12, \text { tot }}=k_{e} \lambda_{1} \lambda_{2}\left[\frac{\left(L_{2}+L\right)\left(L_{1}+L\right)}{L\left(L+L_{1}+L_{2}\right)}\right] \hat{\mathbf{x}} \tag{1}\\
& \overrightarrow{\mathbf{F}}_{12, \text { tot }}=k_{e} \lambda_{1} \lambda_{2} \ln \left[\frac{\left(L_{2}+L\right)\left(L_{1}+L\right)}{L\left(L+L_{1}+L_{2}\right)}\right] \hat{\mathbf{x}} \tag{2}\\
& \overrightarrow{\mathbf{F}}_{12, \text { tot }}=k_{e} \lambda_{1}^{2} \ln \left[\frac{L_{1}+L}{L+L_{1}+L_{2}}\right] \hat{\mathbf{y}} \tag{3}\\
& \overrightarrow{\mathbf{F}}_{12, \text { tot }}=k_{e} \lambda_{1} \lambda_{2} \frac{L_{1}+L_{2}}{\left(L_{1}^{2}+L_{2}^{2}\right)^{3 / 2}+L^{2}} \hat{\mathbf{x}} \tag{4}
\end{align*}
$$

2. Suppose three positively charged particles are constrained to move on a fixed circular track. If all the charges were equal, an equilibrium arrangement would obviously be a symmetrical one with the particles spaced 120° apart around the circle. Suppose two of the charges have equal charge q,
and the equilibrium arrangement is such that these two charges are 140° apart rather than 120°. What is the relative magnitude and sign of the third charge?

- larger than either q_{1} or q_{2} and positive
- smaller than either q_{1} or q_{2} and positive
- larger than either q_{1} or q_{2} and negative
- smaller than either q_{1} or q_{2} and negative

3. In the figure above, a point charge $1 Q^{+}$is at the center of an imaginary spherical Gaussian surface and another point charge $2 Q^{+}$is outside of the Gaussian surface. Point P is on the surface of the sphere. Which one of the following statements is true?

- Both charges contribute to the net electric flux through the sphere but only $2 Q^{+}$contributes to the electric field at point P.
- Only $1 Q^{+}$contributes to the net electric flux through the sphere but both charges contribute to the electric field at point P.
- Both contribute to the net electric flux through the sphere but only $1 Q^{+}$contributes to the electric field at point P.
- Only $2 Q^{+}$contributes to the net electric flux through the sphere but both charges contribute to the electric field at point P.
- Only $2 Q^{+}$contributes to the net electric flux through the sphere and to the electric field at point P on the sphere.
- Only $1 Q^{+}$contributes to the net electric flux through the sphere and to the electric field at point P on the sphere.
- I don't know (this answer is worth $1 / 5$ of full credit)

4. The sphere of radius a was filled with positive charge at uniform density ρ. Then a smaller sphere of radius $a / 2$ was carved out, as shown in the figure, and left empty. Which expression could give the expression for the electric field anywhere inside the cavity? The $\hat{\mathbf{y}}$ direction is vertical, and r is measured from the center of the large sphere. Hint: if it is true anywhere inside the cavity, pick an easy example point. What superposition of simple charge distributions could give the one shown?

- $\overrightarrow{\mathbf{E}}=\frac{2 k_{e} \pi \rho}{r} \hat{\mathbf{y}}$
- $\overrightarrow{\mathbf{E}}=\frac{2 k_{e} \pi \rho a}{r^{2}} \hat{\mathbf{y}}$
- $\overrightarrow{\mathbf{E}}=\frac{2 k_{e} \pi \rho a}{3} \hat{\mathbf{y}}$
- $\overrightarrow{\mathbf{E}}=\frac{2 k_{e} \pi \rho r}{a} \hat{\mathbf{y}}$

