University of Alabama
 Department of Physics and Astronomy

PH 301 / LeClair

Exam 1 redux - solution

1. A particle of mass m traveling along a horizontal line with constant velocity v_{o} suddenly experiences a resistive force $f=-b v^{3}$. (a) Find an expression for $v(t)$. Hint: it is always the same method. (b) Does the object eventually halt, either at finite time or as $t \rightarrow \infty$? If so, under what condition, and if not, why?
bonus $+\mathbf{1}$: What is the time constant of the $v(t)$ decay? That is, your result should have a term that looks like t / τ, what is τ ?

Solution: The only force present is f, so we just need to set up the equation of motion, separate variables, and integrate.

$$
\begin{align*}
m \ddot{x} & =m \dot{v}=m \frac{d v}{d t}=f=-b v^{3} \tag{1}\\
\frac{d v}{v^{3}} & =-\frac{b}{m} d t \tag{2}\\
\int_{v_{o}}^{v} \frac{d v}{v^{3}} & =-\int_{0}^{t} \frac{b}{m} d t=-\frac{b}{m} t \tag{3}\\
-\frac{b}{m} t & =-\left.\frac{1}{2 v^{2}}\right|_{v_{o}} ^{v}=-\frac{1}{2}\left(\frac{1}{v^{2}}-\frac{1}{v_{o}^{2}}\right) \tag{4}\\
\frac{2 b t}{m} & =\frac{1}{v^{2}}-\frac{1}{v_{o}^{2}} \tag{5}\\
\frac{1}{v^{2}} & =\frac{2 b t}{m}+\frac{1}{v_{o}^{2}} \tag{6}\\
v & =\sqrt{\frac{1}{\frac{2 b t}{m}+\frac{1}{v_{o}^{2}}}} \tag{7}
\end{align*}
$$

One can see that $v \rightarrow 0$ as $t \rightarrow \infty$, so the object does halt eventually. We can also see that v is a function of $2 b t / m$. Comparing to the usual form t / τ, we identify the time constant for velocity decay as $\tau=m / 2 b$.
2. A rectangular block of height h and area A floats in water. If the density of the block is ρ_{b} and the density of the water is ρ_{w}, find the frequency of small oscillations when the block bobs up and down on the surface of the water. Hints: The buoyant force is the weight of the displaced fluid. If the object is floating in equilibrium, what is the net force if it is displaced by some δx ?
bonus, $+\mathbf{2}$: show that the frequency of oscillation is equivalent to that of a pendulum of length d_{o}, where d_{o} is the submerged depth of the block in equilibrium.

Solution: First let's find the equilibrium condition. In equilibrium, the buoyant force (weight of displaced water) equals the block's weight. Let x be length of the block that is below the surface of the water. Then

$$
\begin{align*}
F_{B} & =m g \tag{8}\\
\rho_{w} A x g & =\rho_{b} A h g \tag{9}\\
x_{\mathrm{eq}} & =\frac{\rho_{b}}{\rho_{w}} h \tag{10}
\end{align*}
$$

Now, if we push the block down an additional distance δx from equilibrium, there will be a net force due to the new volume of water displaced $(A \delta x)$:

$$
\begin{align*}
\delta F & =-\rho_{w} A g \delta x=m a=\rho_{b} A h a \tag{11}\\
a & =-\frac{\rho_{w} g}{\rho_{b} h} \delta x=-\omega^{2} \delta x \quad \Longrightarrow \quad \omega=\sqrt{\frac{\rho_{w} g}{\rho_{b} h}} \tag{12}
\end{align*}
$$

We end up with simple harmonic motion about the equilibrium point. Noting that $x_{\text {eq }}=\frac{\rho_{b}}{\rho_{w}} h$, we can write $\omega=\sqrt{g / x_{\text {eq }}}$, meaning the block behaves like a pendulum whose length is equal to the equilibrium depth.
3. (a) Write down the total energy E for a mass on a spring in 1 D in terms of \dot{x} and x. (b) Show, as is the case for any conservative 1D system, that you can obtain the equation of motion for the coordinate x by differentiating the equation $E=$ const. It should be the familiar Newton's 2nd law result.
bonus $+\mathbf{1}$: Suppose the energy were not constant, but you had it on good authority that energy was lost to the environment at a rate proportional to velocity squared, i.e,. $\dot{E} \propto-\dot{x}^{2}$. With the result of (b), show that this is in fact just a damped harmonic oscillator. Hint: consider a constant of proportionality 2β to produce a familiar-looking result.

Solution: We know the energy well enough. Remember the chain rule and \dot{E} is found readily.

$$
\begin{align*}
E & =\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k x^{2} \tag{13}\\
\dot{E} & =m \dot{x} \ddot{x}+k x \dot{x}=0 \tag{14}\\
m \ddot{x}+k x & =0 \tag{15}
\end{align*}
$$

Equation of motion recovered. If $\dot{E}=-2 \beta \dot{x}^{2}$,

$$
\begin{align*}
\dot{E} & =m \dot{x} \ddot{x}+k x \dot{x}=-2 \beta \dot{x}^{2} \tag{16}\\
0 & =m \dot{x} \ddot{x}+2 \beta \dot{x}^{2}+k x \dot{x} \tag{17}\\
0 & =m \ddot{x}+2 \beta \dot{x}+k x \tag{18}
\end{align*}
$$

This is the equation for a damped harmonic oscillator we are familiar with.

