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Exam 1 Solution

1. A mass m is constrained to move along the x axis subject to a force F (v) = −Foe−v/u, where Fo and
u are constants. (a) Find v(t) if the initial velocity is vo > 0 at t = 0. (b) At what time does it come
instantaneously to rest?

Solution: With F (v) = −Foe−v/u, write down the second law, then separate variables.

m
dv

dt
= F (v) = −Foe−v/u (1)

ev/u dv = −Fo
m
dt (2)

Now we integrate, and that’s that.

t∫
0

−Fo
m
dt = −Fot

m
=

v∫
vo

ev/u dv = u
(
ev/u

)∣∣∣∣v
vo

= u
(
ev/u − evo/u

)
(3)

−Fot
mu

= ev/u − evo/u (4)

ev/u = evo/u − Fot

mu
(5)

v = u ln

(
evo/u − Fot

um

)
(6)

The particle will come to rest when the velocity is zero, which will be true when when the argument of the
ln () function in the equation above is equal to 1, i.e.,

1 = evo/u − Fot

um
(7)

Fot

um
= evo/u − 1 (8)

t =
um

Fo

(
evo/u − 1

)
(9)

2. To perform a rescue, a lunar landing craft needs to hover just above the surface of the moon, which has a
gravitational acceleration of g/6 ≈ 1.62m/s2. The exhaust velocity is 2000m/s, but fuel amounting to only
20 percent of the total mass may be used. How long can the landing craft hover?

Solution: Let g′ = g/6 for convenience. Our rocket equation is mv̇ = −ṁvex + F ext, where in this case
F ext = −mg′. If the rocket is to hover, we require v̇ = 0, so ṁvex = −mg′. Writing the derivatives explicitly,
separate variables and integrate, noting the mass can go from m to λm with λ = 0.8 such that 20% of the
total mass is burned.



dm

dt
vex = −mg′ (10)

dt = −vex
g′
dm

m
(11)

t = −vex
g′

λm∫
m

dm

m
= −vex

g′
lnm

∣∣∣∣λm
m

= −vex
g′

lnλ (12)

With λ = 0.8, g′ = g/6, and vex = 2000m/s, you should find t ≈ 273 s.

3. Consider a gun of mass M (when unloaded) that fires a shell of mass m with muzzle speed v. (That is,
the shell’s speed relative to the gun is v.) Assuming the gun is completely free to recoil (no external forces
on the gun or shell), use conservation of momentum, find the shell’s speed relative to the ground in terms of
v, m, and M .

Solution: Let vs and vg be the speeds of the shell and gun with respect to the ground, respectively. Then
conservation of momentum tells us mvs = Mvg. The velocity given v is the relative velocity of the shell and
gun, v = vs + vg (where clearly one velocity is negative since they move in opposite directions). Using these
two equations, we just want to eliminate vg.

mvs = Mvg = M(v − vs) = Mv −Mvs (13)

(m+M) vs = Mv (14)

vs =
M

m+M
v =

v

1 +m/M
(15)

4. Near the surface of planet X, the gravitational force on a particle of mass m is vertically downward (along
−ŷ) but has magnitude mγy2, where γ is a constant and y is the mass’ height above horizontal ground. (a)
Find the work done by gravity on a mass m moving from r1 to r2. (b) Use this result to show that the force,
though unusual, is conservative (hint: what is the work done in going from yi to yi?). (c) If I release a mass
from height h above the planet’s surface, how fast will it be going just before it reaches the ground?

Solution: The work done is readily calculated, we integrate F · dr, with r going from (x1, y1) to (x2, y2).

W =

r1∫
r1

F · dr (16)

Now in this case F = Fyŷ, and dr = dxx̂ + dyŷ, so F · dr = Fy dy.

W =

y2∫
y1

Fy dy =

y2∫
y1

−mγy2 dy =
1

3
mγ

(
y31 − y32

)
(17)

The work is clearly independent of the path followed since it depends only on the starting and ending coor-
dinates, and it is also clear that the work done around a closed path is zero,W (r1 → r1) = 1

3mγ
(
y31 − y31

)
= 0



The speed of the dropped object is found from conservation of energy. The change in potential energy is
∆U = −W (0→ r) = 1

3mγy
3, the change in kinetic energy is 1

2mv
2 as always. Thus,

1

2
mv2f =

1

3
mγy3 (18)

v =

√
2

3
γh3 (19)

5. An undamped oscillator has period τo = 1 second. When weak damping is added, it is found that the
amplitude of the oscillator drops by 50% in one period τ1 = 2π/ω1. (a) How big is β compared to ωo? (b)
What is τ1? Hint: recall x(t) = Ae−βt cos (ω1t− δ) and ω2

1 = ω2
o − β2 for weak damping.

We know τo = 1 s, and A(τ1)/A(0) = 1
2 . First we can look at the amplitude. Given x(t) = Ae−βt cos (ω1t− δ),

the maximum amplitude is Ae−βt. Further, we can note that the cos function must have equivalent values
at two times exactly one period apart. Thus,

A(τ1)

A(0)
=

1

2
=
e−βτ1

e0
= e−βτ1 (20)

−βτ1 = ln
1

2

(
recall: − ln a = ln

1

a

)
(21)

βτ1 = ln 2 (22)

We have at least a relationship between β and τ1. Now note that

ω2
1 = ω2

o − β2 (23)

ω1 =
√
ω2
o − β2 (24)

=⇒ τ1 =
2π

ω1
=

2π√
ω2
o − β2

(25)

=⇒ βτ1 =
2πβ√
ω2
o − β2

=
2π√

(ωo/β)
2 − 1

= ln 2 (26)

Solving the last equation for β/ωo,(
2π

ln 2

)2

=

(
ωo
β

)2

− 1 (27)

β

ωo
=

1√
1 + (2π/ ln 2)

2
≈ 0.1097 (28)

β ≈ 0.11ωo (29)

Now that we have β,

τ1
τo

=
ω1

ωo
=

ωo√
ω2
o − β2

=
1√

1− β2/ω2
o

≈ 1.006 (30)

τ1 ≈ 1.006τ1 ≈ 1.006 s (31)



6. An approximation for the potential energy of two ions as a function of their separation is

U(r) = −ke
2

r
+

b

r9
(32)

The first term is the usual Coulomb interaction, while the second term is introduced to account for the
repulsive effect of the two ions at small distances. (a) Find b as a function of the equilibrium spacing ro
(recall that the equilibrium spacing is when U is minimum). (b) Find the frequency of small oscillations
about r=ro, assuming the molecule oscillates according to its effective mass m. Hint: look at the definition
of a Taylor series. Use your result from the first part in the second part to simplify.

Solution: The equilibrium spacing will be characterized by the net force between the ions being zero, or
equivalently, the potential energy being zero:

F (ro) = −dU
dr

∣∣∣∣
r=ro

= 0 =
ke2

r2o
− 9b

r10o
(33)

ke2r8o = 9b (34)

b =
1

9
ke2r8o (35)

Substituting this result back into our potential energy expression, we can find the potential energy at
equilibrium, how much energy is gained by the system of ions condensing into a crystal. This gives the
potential energy at the equilibrium position ro:

U(r) = −ke
2

ro
+
ke2r8o
9r9o

= −8ke2

9ro
(36)

The frequency of small oscillations can be found by Taylor expanding the potential about equilibrium for
small displacements from equilibrium:

U(r − ro) ≈ U(ro) + U ′(ro) (r − ro) +
1

2
U ′′(ro) (r − ro)2 (37)

The first term in the expansion is just the potential energy at equilibrium which we found above. The second
term is proportional to the force, F = −U ′, and therefore must vanish at equilibrium (which is exactly the
condition we enforced to find b, after all). The third term is quadratic in displacement, just as it would be
for a simple harmonic oscillator, U = 1

2k (r − ro)2. Thus, the coefficient of the quadratic term must be 1
2k,

which means the frequency of small oscillations is ω=
√
k/m, where m is the effective (reduced) mass of the

system. That is, the diatomic molecule looks like two masses coupled by a spring.

1

2
k =

1

2
U ′′(ro) (38)

k = U ′′(ro) = −2ke2

r3o

90b

r11o
=

8ke2

r3o
(39)

ω =

√
k

m
=

√
8ke2

mr3o
(40)


