Problem Set 1 due 31 Aug 2018

Instructions:

1. Answer all questions below (bonus questions optional).
2. Show your work for full credit.
3. All problems are due by $11: 59 \mathrm{pm}$ on 31 Aug 2018.
4. You may collaborate, but everyone must turn in their own work.
5. If $\mathbf{a}(t), \mathbf{b}(t)$, and $\mathbf{c}(t)$ are functions of t, verify the following results:

$$
\begin{align*}
\frac{d}{d t}[\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})] & =\mathbf{a} \cdot\left(\mathbf{b} \times \frac{d \mathbf{c}}{d t}\right)+\mathbf{a} \cdot\left(\frac{d \mathbf{b}}{d t} \times c\right)+\frac{d \mathbf{a}}{d t} \cdot(\mathbf{b} \times \mathbf{c}) \tag{1}\\
\frac{d}{d t}[\mathbf{a} \times(\mathbf{b} \times \mathbf{c})] & =\mathbf{a} \times\left(\mathbf{b} \times \frac{d \mathbf{c}}{d t}\right)+\mathbf{a} \times\left(\frac{d \mathbf{b}}{d t} \times c\right)+\frac{d \mathbf{a}}{d t} \times(\mathbf{b} \times \mathbf{c}) \tag{2}
\end{align*}
$$

2. Find the angle between a body diagonal of a cube and any one of its face diagonals. [Hint: Choose a unit cube with one corner at the origin and the opposite corner at point ($1,1,1$). Write down the vectors for the two diagonals and use the scalar product.]
3. (a) Prove that if $\mathbf{v}(t)$ is any vector that depends on time but which has constant magnitude, then $\dot{\mathbf{v}}(t)$ is orthogonal to $\mathbf{v}(t)$. (b) Prove the converse that if $\dot{\mathbf{v}}(t)$ is orthogonal to $\mathbf{v}(t)$, then $|\mathbf{v}(t)|$ is constant. [Hint: Consider the derivative of \mathbf{v}^{2}.] This is a very handy result. It explains why, in two-dimensional polars, $d \mathbf{r} / d t$ has to be in the direction of $\hat{\boldsymbol{\varphi}}$ and vice versa. It also shows that the speed of a charged particle in a magnetic field is constant, since the acceleration is perpendicular to the velocity.
4. When a baseball flies through the air, the ratio $f_{\text {quad }} / f_{\text {lin }}$ of the quadratic to the linear drag force is given by

$$
\begin{equation*}
\frac{f_{\text {quad }}}{f_{\text {lin }}}=\frac{\gamma D}{\beta} v=\left(1.6 \times 10^{3} \mathrm{~s} / \mathrm{m}^{2}\right) D v \tag{3}
\end{equation*}
$$

Given that a baseball has a diameter of about 7 cm , find the approximate speed v at which the two drag forces are equally important. For what range of speeds is it safe to treat the drag force as purely quadratic? Under normal conditions is it a good approximation to ignore the linear term? Answer the same questions for a golf ball of diameter 4.3 cm .
5. A projectile is launched with initial velocity \mathbf{v}_{i} from the start of a ramp, with the ramp making an angle φ with respect to the horizontal. The projectile is launched with an angle $\theta>\varphi$ with respect to the horizontal. (a) At what position along the ramp does the projectile land? (b) What angle θ maximizes the distance the particle makes it along the ramp (your answer will be in terms of the angle φ ? Note no numeric solution is required.

Figure 1: A projectile is launched onto a ramp.
6. The origin of the quadratic drag force on any projectile in a fluid is the inertia of the fluid that the projectile sweeps up. (a) Assuming the projectile has cross-sectional area A (normal to its velocity) and speed v, and that the density of the fluid is ρ, show that the rate at which the projectile encounters fluid (mass/time) is $\rho A v$. (b) Making the simplifying assumption that all of this fluid is accelerated to the speed v of the projectile, show that the net drag force on the projectile is $\rho A v^{2}$. (It is certainly not true that all the fluid the projectile encounters is accelerated to the full speed v, and one might guess the actual force has a correction factor $\kappa<1$, so that $f_{\text {quad }}=\kappa \rho A v^{2}$, with κ depending on the shape of the body, smaller for more streamlined objects).
7. Problem 2.7 from your textbook is about a class of 1-D problems that can always be reduced to doing an integral. Specifically, if F is a function of v alone $(F=F(v))$, then you can show

$$
\begin{equation*}
t=m \int_{v_{o}} v \frac{d v^{\prime}}{F\left(v^{\prime}\right)} \tag{4}
\end{equation*}
$$

Here is another class of problems. Show that if the net force on a 1-D particle depends only on position, $F=F(x)$, then Newton's second law can be solved to find v as a function of x given by

$$
\begin{equation*}
v^{2}=v_{o}^{2}+\frac{2}{m} \int_{x_{o}}^{x} F\left(x^{\prime}\right) d x^{\prime} \tag{5}
\end{equation*}
$$

[Hint: Use the chain rule to prove the following handy relationship (the " $v d v / d x$ rule"): if you regard v as a function of x, then $\dot{v}=v d v / d x=(1 / 2) d v^{2} / d x$. Use this to rewrite Newton's second law in the separated form $\operatorname{md}\left(v^{2}\right)=2 F(x) d x$ and then integrate from x_{o} to x.] Comment on the result for the case that $F(x)$ is actually a constant. (You may also recognize your solution as a statement about kinetic energy and work.)
8. Using the result of the previous problem, consider a mass m constrained to move on the x axis and subject to a force $F=-k x$, where k is a positive constant. The mass is released from rest at $x=x_{o}$ at time $t=0$. First find the speed using equation 5 , and then using $v=d x / d t$, separate the equation and integrate. You should recognize this as one way - not the easiest - to solve the simple harmonic oscillator.
9. A mass m has speed v_{o} at the origin and coasts along the x axis in a medium where the drag force is $F(v)=-c v^{3 / 2}$. Use the " $v d v / d x$ rule" above to write the equation of motion in separated form $m d\left(v^{2}\right)=2 F(x) d x$, and then integrate both sides to give x in terms of v (or vice versa). Show that it will eventually travel a distance $2 m \sqrt{v_{o}} / c$.
10. A basketball has mass $m=0.6 \mathrm{~kg}$ and diameter $D=0.24 \mathrm{~m}$. (a) What is its terminal speed? (See example $2.5 \ldots$) (b) If it is dropped from a $30-\mathrm{m}$ tower, how long does it take to hit the ground and how fast is it going when it does so? [Hint: review the "vertical motion with quadratic drag" section.] Compare with the corresponding numbers in a vacuum
[Bonus Question; Computer] The differential equation for the skateboard in example 2, $\ddot{\varphi}=$ $-\frac{g}{R} \sin \varphi$ cannot be solved in terms of elementary functions, but is easily solved numerically. (a) Do this for the case $\varphi_{o}=20^{\circ}$, with $R=5 \mathrm{~m}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Make a plot of $\varphi(t)$ for two or three periods. (b) On the same plot, show the approximate solution given by (1.57) with the same $\varphi_{o}=20^{\circ}$. Comment on the two graphs. (c) Repeat for $\varphi_{o}=\pi / 2$.

