UNIVERSITY OF ALABAMA Department of Physics and Astronomy

PH 301 / LeClair

Fall 2018

Problem Set 1 due 31 Aug 2018

Instructions:

- 1. Answer all questions below (bonus questions optional).
- 2. Show your work for full credit.
- 3. All problems are due by 11:59pm on 31 Aug 2018.
- 4. You may collaborate, but everyone must turn in their own work.

1. If $\mathbf{a}(t)$, $\mathbf{b}(t)$, and $\mathbf{c}(t)$ are functions of t, verify the following results:

$$\frac{d}{dt} \left[\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \right] = \mathbf{a} \cdot \left(\mathbf{b} \times \frac{d\mathbf{c}}{dt} \right) + \mathbf{a} \cdot \left(\frac{d\mathbf{b}}{dt} \times c \right) + \frac{d\mathbf{a}}{dt} \cdot (\mathbf{b} \times \mathbf{c})$$
(1)

$$\frac{d}{dt} \left[\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \right] = \mathbf{a} \times \left(\mathbf{b} \times \frac{d\mathbf{c}}{dt} \right) + \mathbf{a} \times \left(\frac{d\mathbf{b}}{dt} \times c \right) + \frac{d\mathbf{a}}{dt} \times (\mathbf{b} \times \mathbf{c})$$
(2)

2. Find the angle between a body diagonal of a cube and any one of its face diagonals. [*Hint:* Choose a unit cube with one corner at the origin and the opposite corner at point (1,1,1). Write down the vectors for the two diagonals and use the scalar product.]

3. (a) Prove that if $\mathbf{v}(t)$ is any vector that depends on time but which has constant magnitude, then $\dot{\mathbf{v}}(t)$ is orthogonal to $\mathbf{v}(t)$. (b) Prove the converse that if $\dot{\mathbf{v}}(t)$ is orthogonal to $\mathbf{v}(t)$, then $|\mathbf{v}(t)|$ is constant. [Hint: Consider the derivative of \mathbf{v}^2 .] This is a very handy result. It explains why, in two-dimensional polars, $d\mathbf{r}/dt$ has to be in the direction of $\hat{\boldsymbol{\varphi}}$ and vice versa. It also shows that the speed of a charged particle in a magnetic field is constant, since the acceleration is perpendicular to the velocity.

4. When a baseball flies through the air, the ratio $f_{\text{quad}}/f_{\text{lin}}$ of the quadratic to the linear drag force is given by

$$\frac{f_{\text{quad}}}{f_{\text{lin}}} = \frac{\gamma D}{\beta} v = \left(1.6 \times 10^3 \,\text{s/m}^2\right) Dv \tag{3}$$

Given that a baseball has a diameter of about 7 cm, find the approximate speed v at which the two drag forces are equally important. For what range of speeds is it safe to treat the drag force as purely quadratic? Under normal conditions is it a good approximation to ignore the linear term? Answer the same questions for a golf ball of diameter 4.3 cm.

5. A projectile is launched with initial velocity \mathbf{v}_i from the start of a ramp, with the ramp making an angle φ with respect to the horizontal. The projectile is launched with an angle $\theta > \varphi$ with respect to the horizontal. (a) At what position along the ramp does the projectile land? (b) What angle θ maximizes the distance the particle makes it along the ramp (your answer will be in terms of the angle φ ? Note no numeric solution is required.

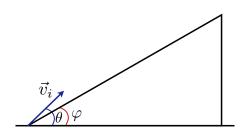


Figure 1: A projectile is launched onto a ramp.

6. The origin of the quadratic drag force on any projectile in a fluid is the inertia of the fluid that the projectile sweeps up. (a) Assuming the projectile has cross-sectional area A (normal to its velocity) and speed v, and that the density of the fluid is ρ , show that the rate at which the projectile encounters fluid (mass/time) is ρAv . (b) Making the simplifying assumption that all of this fluid is accelerated to the speed v of the projectile, show that the net drag force on the projectile is ρAv^2 . (It is certainly not true that all the fluid the projectile encounters is accelerated to the full speed v, and one might guess the actual force has a correction factor $\kappa < 1$, so that $f_{quad} = \kappa \rho Av^2$, with κ depending on the shape of the body, smaller for more streamlined objects).

7. Problem 2.7 from your textbook is about a class of 1-D problems that can always be reduced to doing an integral. Specifically, if F is a function of v alone (F = F(v)), then you can show

$$t = m \int_{v_o} v \frac{dv'}{F(v')} \tag{4}$$

Here is another class of problems. Show that if the net force on a 1-D particle depends only on position, F = F(x), then Newton's second law can be solved to find v as a function of x given by

$$v^{2} = v_{o}^{2} + \frac{2}{m} \int_{x_{o}}^{x} F(x') \, dx'$$
(5)

[*Hint:* Use the chain rule to prove the following handy relationship (the "vdv/dx rule"): if you regard v as a function of x, then $\dot{v} = vdv/dx = (1/2)dv^2/dx$. Use this to rewrite Newton's second law in the separated form $md(v^2) = 2F(x) dx$ and then integrate from x_o to x.] Comment on the result for the case that F(x) is actually a constant. (You may also recognize your solution as a statement about kinetic energy and work.)

8. Using the result of the previous problem, consider a mass m constrained to move on the x axis and subject to a force F = -kx, where k is a positive constant. The mass is released from rest at $x = x_o$ at time t = 0. First find the speed using equation 5, and then using v = dx/dt, separate the equation and integrate. You should recognize this as one way – not the easiest – to solve the simple harmonic oscillator.

9. A mass *m* has speed v_o at the origin and coasts along the *x* axis in a medium where the drag force is $F(v) = -cv^{3/2}$. Use the "vdv/dx rule" above to write the equation of motion in separated form $md(v^2) = 2F(x) dx$, and then integrate both sides to give *x* in terms of *v* (or vice versa). Show that it will eventually travel a distance $2m\sqrt{v_o}/c$.

10. A basketball has mass m = 0.6 kg and diameter D = 0.24 m. (a) What is its terminal speed? (See example 2.5 ...) (b) If it is dropped from a 30-m tower, how long does it take to hit the ground and how fast is it going when it does so? [*Hint:* review the "vertical motion with quadratic drag" section.] Compare with the corresponding numbers in a vacuum

[Bonus Question; Computer] The differential equation for the skateboard in example 2, $\ddot{\varphi} = -\frac{g}{R}\sin\varphi$ cannot be solved in terms of elementary functions, but is easily solved numerically. (a) Do this for the case $\varphi_o = 20^\circ$, with R = 5 m and $g = 9.8 \text{ m/s}^2$. Make a plot of $\varphi(t)$ for two or three periods. (b) On the same plot, show the approximate solution given by (1.57) with the same $\varphi_o = 20^\circ$. Comment on the two graphs. (c) Repeat for $\varphi_o = \pi/2$.